Math, asked by ishanrathore5439, 10 months ago

Prove it :-
 \frac{ \cos( \alpha ) }{1 -  \sin( \alpha ) }  =  \frac{1 +  \sin( \alpha ) }{ \cos( \alpha ) }

Answers

Answered by Anonymous
71

Refer to the above attachment.

Attachments:
Answered by rajsingh24
68

Question:-</h2><p></p><h2> \\  \frac{ \cos( \alpha ) }{1 - \sin( \alpha ) } = \frac{1 + \sin( \alpha ) }{ \cos( \alpha ) }  \\ Answer:- \\ LHS:- \\ = \frac{cos \alpha }{1 - sin \alpha }  \\  =  \frac{cos \alpha  \times (1 + sin \alpha }{1 - sin \alpha \times (1 + sin \alpha ) }  \\  =  \frac{cos \alpha (1 + sin \alpha )}{(1 - sin  {}^{2} \alpha )}  \\  =    \frac{\cancel{cos \alpha} + (1 + sin \alpha) }{cos  {}^{\cancel{2 }}\alpha  }  \\  =  \frac{1 + sin \alpha }{cos \alpha }  \\  = RHS.

THANKS.

Similar questions