Math, asked by grts5236, 1 year ago

Prove it

 \frac{sin \: a + cos \: a}{sina \:  - cos \: a}  =  \sqrt{ \frac{1 + sin2a}{1 - sin2a} }

Answers

Answered by rajaku592001
3

cosA +sinA= √2cosA

=> sinA= √2cosA- cosA

=> sinA = cosA(√2 -1)

Now multiplying both side by ( √2+1)

=>sinA(√2+1) = cosA(√2–1)(√2+1)

=>√2sinA + sinA=cosA(2–1)

=> cosA-sinA= √2sinA (Answer)

Answered by Swarnimkumar22
7
\bold{\huge{Hay!!}}


\bold{Dear\:user!!}



\bold{\underline{Question-}}


Prove it

 \frac{sin \: a + cos \: a}{sina \: - cos \: a} = \sqrt{ \frac{1 + sin2a}{1 - sin2a} }



\bold{\underline{Answer-}}


LHS = Prove it

 \frac{sin \: a + cos \: a}{sina \: - cos \: a}


 =  >  \sqrt{ \frac{(sin \: a \:  + cos \: a) {}^{2} }{(sin \: a \:  - cos \: a) {}^{2} } }  \\  \\  \\  \\  =  >  \sqrt{ \frac{ {sin}^{2} a +  {cos}^{2} a + 2sin \: a \: cosa}{ {sin}^{2} a +  {cos}^{2}a - 2sin \: a \: cosa } }  \\  \\  \\  \\  =  >  \sqrt{ \frac{1 + sin2a}{1 - sin2a} }


Hence, Proved
Similar questions