Math, asked by utsavrao, 1 year ago

prove it . Trigonometry​

Attachments:

Answers

Answered by snehaa2830
3

well your question is a bit incorrect. It shouldn't be 'whole square' at theR.H.S..

I guess it's a typing mistake.

Attachments:

snehaa2830: oops I'm not able to edit my answer
snehaa2830: sorry @utsav
snehaa2830: i read it wrong
snehaa2830: but the method is similar
utsavrao: ok
utsavrao: in which class you are??
snehaa2830: 12th
Answered by sivaprasath
1

Answer :

Given :

To prove that,

\frac{1+tan^2A}{1+cot^2A} = \frac{1-tanA}{1+cotA}

We know that,

 tan A = \frac{sinA}{cosA}  ..(i)

 cot A = \frac{cosA}{sinA}  ..(ii)

 sin^2A+cos^2A = 1           ..(iii)

Step-by-step explanation:

LHS = \frac{1+tan^2A}{1+cot^2A}

= \frac{1+(tanA)^2}{1+(cotA)^2}

= \frac{1+(\frac{sinA}{cosA})^2}{1+(\frac{cosA}{sinA})^2}  [ by (i) & (ii) ]

= \frac{1+\frac{sin^2A}{cos^2A}}{1+\frac{cos^2A}{sin^2A}}

= \frac{\frac{sin^2A + cos^2A}{cos^2A}}{\frac{sin^2A +cos^2A}{sin^2A}}

= \frac{\frac{1}{cos^2A}}{\frac{1}{sin^2A}} [by (iii) ]

= \frac{\frac{(1)^2}{(cosA)^2}}{\frac{(1)^2}{(sinA)^2}}

= \frac{(\frac{1}{cosA})^2}{(\frac{1}{sinA})^2}

by multiplying by (-\frac{(cosA - sinA)}{(sinA - cosA)})^2,

We get,

= \frac{(\frac{1}{cosA})^2}{(\frac{1}{sinA})^2} \times (-\frac{(cosA - sinA)}{(sinA - cosA)})^2}

= \frac{(\frac{cosA - sinA}{cosA})^2}{(\frac{sinA - cosA}{sinA})^2}

= \frac{( 1 -\frac{sinA}{cosA})^2}{(1 -\frac{cosA}{sinA})^2}

= \frac{( 1 -tanA)^2}{(1 -cotA)^2}

= (\frac{1 -tanA}{1 -cotA})^2 = RHS

Hence, proved

Similar questions