Math, asked by bahsgge, 1 year ago

prove it
tsvzgyajBHzgajavsjsvahsidbshs​

Attachments:

Answers

Answered by Anonymous
1

Hope this helps you!

:-)

Attachments:

bahsgge: Thanks Miss
bahsgge: It Helped me a lot
bahsgge: Plss Reply
bahsgge: where do you live?
bahsgge: You Look So pretty
Answered by aquialaska
0

Answer:

To prove:  \frac{\sqrt{Sec\theta-1}}{\sqrt{Sec\theta+1}}+\frac{\sqrt{Sec\theta+1}}{\sqrt{Sec\theta-1}}=2cosec\theta

Proof,

LHS

=\frac{\sqrt{Sec\theta-1}}{\sqrt{Sec\theta+1}}+\frac{\sqrt{Sec\theta+1}}{\sqrt{Sec\theta-1}}

=\frac{\sqrt{Sec\theta-1}\times\sqrt{Sec\theta-1}+\sqrt{Sec\theta+1}\times\sqrt{Sec\theta+1}}{\sqrt{Sec\theta+1}\times\sqrt{Sec\theta-1}}=\frac{(\sqrt{Sec\theta-1})^2+(\sqrt{Sec\theta+1})^2}{\sqrt{(Sec\theta+1)(Sec\theta-1)}}

=\frac{(Sec\theta-1)+(Sec\theta+1)}{\sqrt{Sec^2\theta-1^2}}   (using identity ( x - y ) ( x + y ) = x² - y² )

=\frac{Sec\theta-1+Sec\theta+1}{\sqrt{tan^2\theta}}   (using identity sec^2\theta-1=tan^2\theta)

=\frac{2Sec\theta}{tan\theta}

=\frac{2\frac{1}{cos\theta}}{\frac{sin\theta}{cos\theta}}

=\frac{2}{sin\theta}

=2\,cosec\theta

= RHS

Hence Proved

Similar questions