Math, asked by sirigopal15, 2 months ago

prove it using trigonometric identities ​

Attachments:

Answers

Answered by MagicalBeast
9

To prove :

 \sf \:  \dfrac{ \bigg(1 +   \tan ^{2} ( A) \:  \bigg)  \cot (A)  }{ \csc^{2} (A) }   \: = \:  \tan ( A)

Identity used :

 \sf \bullet \: 1 + \tan ^{2} ( A) = \sec^{2} ( A)

 \sf \bullet \: \csc( A) = \dfrac{1}{ \sin( A)  \: }

\sf \bullet \: \sec( A) =  \dfrac{1}{ \cos( A)  \: }

\sf \bullet \: \cot( A) =   \dfrac{ \cos(A) }{ \sin(A) }

\sf \bullet \: \tan( A) =   \dfrac{ \sin(A) }{ \cos(A) }

Solution :

\sf \implies LHS =  \dfrac{ \bigg(1 +   \tan ^{2} ( A) \:  \bigg)  \cot(A)  }{ \csc^{2} (A) }

\sf \implies LHS =  \dfrac{   \sec ^{2} ( A) \:  \cot (A)  }{ \csc^{2} (A) }

\sf \implies LHS =  \dfrac{     \bigg(\:  \dfrac{1}{ \cos ^{2} ( A)  \: }\bigg)\:  \bigg(\:  \dfrac{\cos( A) \: }{ \sin( A)  \: }\bigg)\:  }{ \bigg(\:  \dfrac{1}{ \sin ^{2} ( A)  \: }\bigg)\: }

\sf \implies LHS =      \bigg(\:  \dfrac{ \: \sin ^{2} ( A) }{ \cos ^{2} ( A)  \: }\bigg)\:  \bigg(\:  \dfrac{\cos( A) \: }{ \sin( A)  \: }\bigg)

\sf \implies LHS =      \bigg(\:  \dfrac{ \: \sin ( A) }{ \cos ( A)  \: }\bigg)\:

\sf \implies LHS =      \: \tan ( A)

Now, RHS = tan(A)

This gives, LHS = RHS

Hence proved.

Similar questions