Math, asked by hemrajbhati120, 9 months ago

prove it with complete explanation with each and every step ​

Attachments:

Answers

Answered by 007Boy
1

Answer:

Here is your solution.

Attachments:
Answered by InfiniteSoul
1

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Question}}}}}}}}

Prove that

\sf\dfrac{a+b+c}{a^{-1}b^{-1} + b^{-1}c^{-1} + c^{-1}a^{-1}} = abc

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Solution}}}}}}}}

\implies\sf\dfrac{a+b+c}{a^{-1}b^{-1} + b^{-1}c^{-1} + c^{-1}a^{-1}} = abc

\implies\sf\dfrac{a+b+c}{\dfrac{1}{ab} + \dfrac{1}{bc}+\dfrac{1}{ca}} = abc

\implies\sf\dfrac{a+b+c}{\dfrac{a+b+c}{abc}} = abc

\implies\sf\dfrac{\cancel{a+b+c}}{\cancel{a+b+c}} \times abc= abc

\sf\implies abc = abc

{\bold{\blue{\boxed{\bf{abc= abc }}}}}

{\bold{\blue{\boxed{\bf{LHS= RHS }}}}}

{\bold{\blue{\boxed{\bf{\dag Hence\: proved}}}}}

___________________❤

THANK YOU❤

Similar questions