Math, asked by shravanishinde2976, 9 months ago

prove it with explanations and stepwise please answer my question I will mark them as brainlist ​

Attachments:

Answers

Answered by MisterIncredible
15

Question :

Prove that ;

 \sf{ \dfrac{ \tan \theta }{ \sec \theta - 1}  +  \dfrac{ \tan \theta}{ \sec \theta + 1} = 2 \csc \theta }

Answer

Given : -

 \sf{ \dfrac{ \tan \theta }{ \sec \theta - 1}  +  \dfrac{ \tan \theta}{ \sec \theta + 1} = 2 \csc \theta }

Required to prove : -

  • LHS = RHS

Identity used : -

sec² θ - tan² θ = 1

Proof : -

 \sf{ \dfrac{ \tan \theta }{ \sec \theta - 1}  +  \dfrac{ \tan \theta}{ \sec \theta + 1} = 2 \csc \theta }

We need to prove that LHS = RHS

So,

Consider the LHS part

 \sf{ \dfrac{ \tan \theta }{ \sec \theta - 1}  +  \dfrac{ \tan \theta}{ \sec \theta + 1}  }

Multiply the 1st one's numerator and denominator with sec θ + 1

 \sf{ \dfrac{ \tan \theta }{ \sec \theta - 1} \times  \dfrac{ \sec \theta + 1}{ \sec \theta + 1}  +  \dfrac{ \tan \theta}{ \sec \theta +  1}}  \\  \\  \\ \sf{  \dfrac{ \tan \theta( \sec \theta + 1)}{( \sec \theta - 1)( \sec \theta + 1)} +  \dfrac{ \tan \theta}{ \sec \theta + 1} } \\  \\ \textsf{ Using the identity ; }\\ \mathtt{ ( a + b ) ( a - b ) = a^2 - b^2} \\  \\  \\ \sf{  \dfrac{ \tan \theta \sec \theta +  \tan \theta}{ {\sec }^{2} \theta - 1 }  +  \dfrac{ \tan \theta}{ \sec \theta + 1}  }

Now,

Multiply the 2nd one's numerator and denominator with sec θ - 1

 \tt{ \dfrac{ \tan \theta \sec \theta +  \tan \theta}{ { \sec}^{2}  \theta - 1}  +  \dfrac{ \tan \theta}{ \sec \theta + 1} \times  \dfrac{ \sec \theta - 1}{ \sec \theta - 1}} \\  \\  \\  \tt{ \dfrac{ \tan \theta \sec \theta  +  \tan  \theta}{ { \sec}^{2} \theta - 1 } +  \dfrac{ \tan \theta( \sec \theta + 1)}{( \sec \theta + 1)( \sec \theta - 1)}  } \\  \\  \\  \dfrac{ \tan \theta \sec \theta +  \tan \theta}{ { \sec}^{2} \theta - 1 }  +  \dfrac{ \tan \theta \sec \theta +  \tan \theta}{ { \sec}^{2} - 1 }

Using the identity ;

sec² θ - tan² θ = 1

sec² θ - 1 = tan² θ

\dfrac{ \tan \theta \sec \theta +  \tan \theta}{  { \tan}^{2}  \theta}   +  \dfrac{ \tan \theta \sec \theta -  \tan \theta}{ { \tan}^{2} \theta }

Since,

  • tan θ = sin θ/cos θ

  • sec θ = 1/cos θ

 \dfrac{ \dfrac{ \sin \theta}{ \cos \theta} \times  \dfrac{1}{ \cos \theta } +  \dfrac{ \sin \theta}{ \cos \theta}   }{ { \tan}^{2}  \theta}  +  \dfrac{ \dfrac{ \sin \theta}{ \cos \theta} \times  \dfrac{1}{ \cos \theta }  -   \dfrac{ \sin \theta}{ \cos \theta}   }{ { \tan}^{2}  \theta} \\  \\  \\  \dfrac{ \dfrac{ \sin \theta}{  { \cos}^{2} \theta } +  \dfrac{ \sin \theta}{ \cos \theta }  }{ { \tan}^{2} \theta }  + \dfrac{ \dfrac{ \sin \theta}{  { \cos}^{2} \theta }  -   \dfrac{ \sin \theta}{ \cos \theta }  }{ { \tan}^{2} \theta }  \\  \\  \\  \dfrac{ \dfrac{ \sin \theta  +  \sin \theta  \cos \theta}{ { \cos}^{2} \theta} }{ { \tan}^{2} \theta }  + \dfrac{ \dfrac{ \sin \theta   -   \sin \theta  \cos \theta}{ { \cos}^{2} \theta} }{ { \tan}^{2} \theta } \\  \\ \\ \\ \dfrac{ \dfrac{ \sin \theta  +  \sin \theta  \cos \theta}{ { \cos}^{2} \theta} }{  \dfrac{ { \sin}^{2}  \theta}{  { \cos }^{2}  \theta}  } + \dfrac{ \dfrac{ \sin \theta   -   \sin \theta  \cos \theta}{ { \cos}^{2} \theta} }{  \dfrac{ { \sin}^{2}  \theta}{  { \cos }^{2}  \theta}  }

Now,

cos² θ get's cancelled since it is present in denominations of both fractions

 \dfrac{ \sin \theta +  \sin \theta \cos \theta}{  { \sin}^{2} \theta } +  \dfrac{ \sin \theta -  \sin \theta \cos \theta}{ { \sin}^{2}  \theta} \\  \\ \\ \sf   \dfrac{ \sin \theta +  \sin \theta \cos \theta +  \sin \theta -   \sin \theta \cos \theta}{ { \sin}^{2} \theta } \\  \\  \\ \sf   \dfrac{ \sin \theta +  \sin \theta}{  { \sin}^{2} \theta }  \\  \\  \\ \sf  \dfrac{2 \sin \theta}{  { \sin}^{2}  \theta} \\  \\  \\ \tt 2 \times  \dfrac{ \sin \theta}{ { \sin}^{2} \theta }  \\  \\  \\ \tt  2 \times  \dfrac{1}{ \sin \theta}  \\  \\  \\ 2 \times  \csc \theta \\  \\  \\ \tt  \implies 2 \csc \theta

Consider the RHS part

2 cosec θ

LHS = RHS

Hence Proved ✓

Answered by Anonymous
16

Answer :

Generally \;to \;prove \;something\; in\; mathematics ,

We \;consider \;L.H.S\;( or) \:R.H.S \;and \;derive \;R.H.S \;and\; L.H.S\; respectively

NOTE :

  • Here \;I\; represented\; \theta \;as\; x

Considering L.H.S

  • \dfrac{tanx}{secx - 1} + \dfrac{tanx}{secx+1}

  • Lets \;multiply \;and \;divide\;the\;first \;term \;with (secx+1)\; and\; second \;with \;(secx-1)

=> \dfrac{(tanx)}{(secx - 1)} \times\dfrac{(secx + 1)}{(secx+1)}

+ \dfrac{(tanx)}{(secx + 1)}\times \dfrac{(secx-1)}{(secx-1)}

Reminder :

  • (a+b)(a-b)=a^2-b^2

  • tan^2x = sec^2x - 1

  • secx= \dfrac{1}{cosx}

  • tanx =\dfrac{sinx}{cosx}

  • cosecx =\dfrac{1}{sinx}

Coming back to solution,

=> \dfrac{(tanx)}{(secx - 1)} \times\dfrac{(secx + 1)}{(secx+1)}

+ \dfrac{(tanx)}{(secx + 1)}\times \dfrac{(secx-1)}{(secx-1)}

=> \dfrac{tanx(secx-1)}{sec²x - 1} + \dfrac{tanx(secx+1)}{sec²x - 1}

=> \dfrac{tanxsecx - tanx + tanxsecx + tanx}{sec²x-1}

=> \dfrac{2tanxsecx}{tan²x}

=> \dfrac{2secx}{tanx}

=> \dfrac{2(\dfrac{1}{(cosx)})}{(\dfrac{sinx}{cosx})}

=> \dfrac{2}{sinx}

=> 2cosecx

Therefore we derived R.H.S from L.H.S

Hence ,

\dfrac{tanx}{secx - 1} + \dfrac{tanx}{secx + 1} = 2cosecx

 Replacing\;x\; with\;\theta

\dfrac{tan\theta}{sec\theta- 1} + \dfrac{tan\theta}{sec\theta+ 1} = 2cosec\theta

Proved !

Similar questions