Prove it ... yooo brooos
Attachments:
Answers
Answered by
27
Answer:
We All Know That
sin³A = (3sinA - sin3A)/4
cos³A = (3cosA + cos3A)/4
Getting Back To The Question
(sinA - 2sin³A)/(2cos³A - cosA) = tanA
Putting The Value of sin³A and cos³A in LHS
We Get,
(2sinA - 3sinA + sin3A)/(3cosA + cos3A - 2cosA)
= (sin3A - sinA)/(cos3A + cosA)
Now Using the sinC - sinD and cosC + cosD Formula
sinC - sinD = 2cos(C+D)/2*sin(C-D)/2
cosC + cosD = 2cos(C+D)/2*cos(C-D)/2
= (2cos(3A+A)/2*sin(3A-A)/2) / (2cos(3A+A)/2*cos(3A-A)/2)
= 2cos2A*sinA/2cos2A*sinA
= sinA/cosA
= tanA
LHS = RHS
Hence Proved.... ^_^
Anonymous:
✴️reason why I'm here
Answered by
0
Answer:
The answer above me is correct
Step-by-step explanation:
Similar questions