Math, asked by anubhavsrajput54, 1 year ago

prove L.H.S = R.H.S.

Attachments:

Answers

Answered by Anonymous
2
we have to prove that :

 \frac{ \cos \alpha }{1 - \sin\alpha } = \tan( \frac{\pi}{4} + \frac{ \alpha }{2} )

On taking LHS :

 \frac{ \cos \alpha }{1 - \sin \alpha } \\ \\ = > \frac{ { \cos}^{2} \frac{ \alpha }{2} - { \sin }^{2} \frac{ \alpha }{2} }{1 - 2 \sin \frac{ \alpha }{2} \cos \frac{ \alpha }{2} } \\ \\ = > \frac{( \cos\frac{ \alpha }{2} + \sin \frac{ \alpha }{2} )( \cos \frac{ \alpha }{2} - \sin\frac{ \alpha }{2} ) }{ { \sin}^{2} \frac{ \alpha }{2} + { \cos }^{2} \frac{ \alpha }{2} - 2 \sin\frac{ \alpha }{2} \cos \frac{ \alpha }{2} } \\ \\ = > \frac{( \cos\frac{ \alpha }{2} + \sin \frac{ \alpha }{2})( \cos\frac{ \alpha }{2} - \sin\frac{ \alpha }{2} ) }{ {( \cos\frac{ \alpha }{2} - \sin \frac{ \alpha }{2} ) }^{2} } \\ \\ = > \frac{ (\cos \frac{ \alpha }{2} + \sin \frac{ \alpha }{2} ) }{ (\cos\frac{ \alpha }{2} - \sin \frac{ \alpha }{2} ) } \\ \\ = > \frac{ \cos \frac{ \alpha }{2}(1 + \tan \frac{ \alpha }{2} ) }{ \cos \frac{ \alpha }{2} (1 - \tan\frac{ \alpha }{2} ) } \\ \\ = > \frac{(1 + \tan \frac{ \alpha }{2} ) }{(1 - \tan \frac{ \alpha }{2} ) }

On taking RHS :

 \tan( \frac{\pi}{4} + \frac{ \alpha }{2} ) \\ \\ = > \frac{( \tan\frac{\pi}{4} + \tan \frac{ \alpha }{2} ) }{(1 - \tan \frac{\pi}{4} \tan \frac{ \alpha }{2} ) } \\ \\ = > \frac{(1 + \tan\frac{ \alpha }{2} )}{(1 - \tan \frac{ \alpha }{2} ) } \\ \\ As \: we \: know \: that :\: \tan \frac{\pi}{4} = 1 \\ \\ LHS = RHS \\ \\ HENCE \: PROVED
Answered by guptaramanand68
1
Use the following identity:

 \tan(x + y)  =  \frac{ \tan(x) +  \tan(y)  }{1 -  \tan(x)  \tan(y) }   \\
Plug in x = pi/4 and y = A/2.
 \tan(  \frac{\pi}{4} +  \frac{a}{2} )  =  \frac{ \tan( \frac{\pi}{4} )  +  \tan( \frac{a}{2} ) }{1 -  \tan( \frac{\pi}{4} ) \times   \tan( \frac{a}{2} )   }  \\   =  \frac{1 +  \tan( \frac{a}{2} ) }{1 -  \tan( \frac{a}{2} ) }  \\  =  \frac{1 +  \tan( \frac{a}{2} ) }{1 -  \tan( \frac{a}{2} ) }  \times  \frac{1 +  \tan( \frac{a}{2} ) }{1  +  \tan( \frac{a}{2} ) }  \\  =  \frac{ {(1 +  \tan( \frac{a}{2}) ) }^{2} }{1 -   \tan ^{2} (\frac{a}{2} ) }
Now,

observe that,

 \cos(2x)  =  \frac{1 -  \tan^{2} (x) }{1  +  \tan^{2} (x) }  \\  \cos(a)  =  \frac{1 -  \tan^{2} ( \frac{a}{2} ) }{1 +  \tan ^{2} ( \frac{a}{2} ) }  \\  \cos(a)  \times (1 +  \tan ^{2} ( \frac{a}{2} ) ) = 1 -  \tan^{2} ( \frac{a}{2} )
Thus the expression becomes,

 \frac{(1 +  \tan^{2}( \frac{a}{2} )) ^{2}  }{ \cos(a) \times (1  +  \tan^{2} ( \frac{a}{2} ))  }   \\  =  \frac{1 +  \tan ^{2} ( \frac{a}{2} ) + 2 \tan( \frac{a}{2} )  }{ \cos(a)  \times (1 +  \tan ^{2} ( \frac{a}{2} )) }  \\  =  \frac{1 +  \tan ^{2} ( \frac{a}{2} )}{\cos(a)  \times (1 +  \tan ^{2} ( \frac{a}{2} ))}  +  \frac{2 \tan( \frac{a}{2} ) }{\cos(a)  \times (1 +  \tan ^{2} ( \frac{a}{2} ))}  \\  =  \frac{1 }{ \cos(a) }  +  \frac{1}{ \cos(a)  }  \times  \frac{2 \tan( \frac{a}{2} ) }{1 +  \tan ^{2} ( \frac{a}{2} ) }  \\  =  \frac{1}{ \cos(a) }  +  \frac{1}{ \cos(a) }  \times 2 \sin( \frac{a}{2} )   \cos( \frac{a}{2} )  \\  =  \frac{1}{ \cos(a) }  +  \frac{ \sin(a) }{ \cos(a) }  \\  =  \frac{1 +  \sin(a) }{ \cos(a) }  \\  =  \frac{(1 +  \sin(a))(1 -  \sin(a))  }{( \cos(a) (1 -  \sin(a) ) }  \\  =  \frac{ \cos^{2} (a) }{ \cos(a)(1 -  \sin(a))  }  \\  =  \frac{ \cos(a) }{1 -  \sin(a) }


The other identities I have used are:

 \sin(2x)  = 2 \sin(x)  \cos(x)  \\  \cos(2x)  =  \cos^{2} (x)  -  \sin ^{2} (x)

Similar questions