Math, asked by sociocafez2018, 9 months ago

Prove L.H.S = R.H.S
I will Mark Him BRAINLIEST Who Prove This Sums.
class 10 ML. Aggarwal​

Attachments:

Answers

Answered by Anonymous
0

\huge{\bigstar}}\huge{\boxed{\red{\mathfrak{Answer}}}}\huge{\bigstar}}

_________________________

\mathtt{L.H.S}

 =  \frac{sin \: x}{ \frac{cos \: x}{sin \: x} +  \frac{1}{sin\: x}  }  \\  \\  =  \frac{sin \: x}{ \frac{1 + cos \: x}{sin \: x} }  \\  \\  =  \frac{ {sin}^{2} \: x }{1 + cos \: x}  \\   \\  = \frac{ 1 -  {cos}^{2} x}{1 + cos \: x} \\  \\  =  \frac{(1 - cos \: x)(1 + cos \: x)}{1 + cos \: x}  \\  = 1 - cos \: x \\

\mathtt{R.H.S}

 =  \frac{sin \: x}{ \frac{1  - cos \: x}{sin \: x} }  + 2 \\  \\  =  \frac{ {sin}^{2}  \: x}{1 - cos \: x}  + 2 \\  \\  similarly \\  = 1 + cos \: x + 2 \\  = 3 + cos \: x

Hence that's why

L.H.S ≠ R.H.S

Similar questions