Math, asked by Vyomsingh, 7 months ago

PROVE➠
L.H.S=R.H.S
(N.C.E.R.T Class 12th)

4cosxcos( \dfrac{\pi}{3}  + x) cos( \dfrac{\pi}{3}   -  x)  = cos3x

Answers

Answered by Garg5911
0

Answer:

Since, cos(α−β)=1

⇒α−β=nπ,

But −2π≤α−β≤2π [ as, α,β∈(−π,π)]

∴α−β={0,−2π,2π} ...(i)

And α+β={2α,2α±2π}

Given, cos(α+β)=

e

1

⇒cos2α=

e

1

<1, which is true for four values of α. as −2π<2α<2π

Answered by anindyaadhikari13
13

\star\:\:\:\sf\large\underline\blue{Question:-}

  • Prove that  \sf 4\cos(x)  \cos( \frac{\pi}{3}  + x)  \cos( \frac{\pi}{3} - x )  =  \cos(3x)

\star\:\:\:\sf\large\underline\blue{Proof:-}

While solving this problem, we shall use these formulae.

  •  \sf \cos(180 \degree - x)  =  -  \cos(x)
  •  \sf2 \cos(x)  \cos(y)  =  \cos(x + y)  +  \cos(x - y)
  •  \sf \cos( - x)  =  \cos(x)

So, here the proof comes.

Taking LHS,

 \sf 4\cos(x)  \cos( \frac{\pi}{3}  + x)  \cos( \frac{\pi}{3} - x )

 \sf = 2 \cos(x)  \{2 \cos( \frac{\pi}{3}  + x)  \cos( \frac{\pi}{3} - x )  \}

 \sf = 2 \cos(x)  \{  \cos( \frac{2\pi}{3} )  + \cos(2x)  \}

 \sf = 2 \cos(x)  \{  \cos( \pi -  \frac{\pi}{3}  )  + \cos(2x)  \}

 \sf = 2 \cos(x)  \{  \cos(-  \frac{\pi}{3}  )  + \cos(2x)  \}

 \sf = 2 \cos(x)  \{  \cos(2x)  +  \frac{ - 1}{2}   \}

 \sf = 2 \cos(x) \cos(2x)  - \cos(x)

 \sf =  \cos(x + 2x)  +  \cos(x - 2x)  -  \cos(x)

 \sf =  \cos(3x)  +  \cos( - x)  -  \cos(x)

 \sf =  \cos(3x)  +  \cos( x)  -  \cos(x)

 \sf =  \cos(3x)

Taking RHS,

 \sf =  \cos(3x)

Therefore, LHS=RHS.

Hence Proved.

Similar questions