Prove LHS and RHS in 1-cos Ø/sin Ø = sin Ø/1+cos Ø
Answers
Answered by
0
Answer:
Prove that (sin Ø - cos Ø + 1) / (sin Ø + cos Ø - 1) = 1/(sec Ø - tan Ø) using the identity sec² Ø = 1 + tan² Ø
Solution :
We apply the identity involving sec Ø and tan Ø, let us first convert the LHS in terms of sec Ø and tan Ø by dividing numerator and denominator by cos Ø.
LHS = ( sinØ- cosØ + 1 ) / ( sin Ø + cos Ø - 1 )
= ( tanØ - 1 + secØ ) / ( tanØ + 1 - secØ )
= ( tanØ + secØ ) - 1 / ( tanØ - secØ ) + 1
= { (tanØ + secØ) - 1 }(tanØ - secØ) / (tanØ - secØ) + 1 }(tanØ - secØ)
= [ ( tan²Ø - sec²Ø) - ( tanØ - secØ ) ] / [ { tanØ - secØ + 1 } ( tanØ - secØ ) ]
= ( - 1 - tanØ + secØ ) / ( tanØ - secØ + 1 )(tanØ - secØ)
= -1 / (tanØ - secØ)
= 1/(secØ - tanØ)
Which is the RHS of the identity, we are required to prove.
Similar questions