Math, asked by samirahamad, 11 months ago

prove LHS IS EQUAL TO RHS.

CHALLENGE FOR TOPPERS.​

Attachments:

Answers

Answered by nandukrishnapkm
0

Step-by-step explanation:

For answer refer to the attachment

Attachments:
Answered by shadowsabers03
1

We have,

\tan(45^{\circ}-\theta)=\dfrac{\cos\theta-\sin\theta}{\cos\theta+\sin\theta}

So, let \theta=\dfrac{A}{2}. Then we can have,

\tan\left(45^{\circ}-\dfrac{A}{2}\right)=\dfrac{\cos\left(\dfrac{A}{2}\right)-\sin\left(\dfrac{A}{2}\right)}{\cos\left(\dfrac{A}{2}\right)+\sin\left(\dfrac{A}{2}\right)}

The RHS can be squared, then be square rooted! The value won't change!

\tan\left(45^{\circ}-\dfrac{A}{2}\right)=\sqrt{\left(\dfrac{\cos\left(\dfrac{A}{2}\right)-\sin\left(\dfrac{A}{2}\right)}{\cos\left(\dfrac{A}{2}\right)+\sin\left(\dfrac{A}{2}\right)}\right)^2}

The RHS only is considered below.

\begin{aligned}&\sqrt{\left(\dfrac{\cos\left(\dfrac{A}{2}\right)-\sin\left(\dfrac{A}{2}\right)}{\cos\left(\dfrac{A}{2}\right)+\sin\left(\dfrac{A}{2}\right)}\right)^2}\\\\\implies\ \ &\sqrt{\dfrac{\left(\cos\left(\dfrac{A}{2}\right)-\sin\left(\dfrac{A}{2}\right)\right)^2}{\left(\cos\left(\dfrac{A}{2}\right)+\sin\left(\dfrac{A}{2}\right)\right)^2}}\end{aligned}

\begin{aligned}\implies\ \ &\sqrt{\dfrac{\cos^2\left(\dfrac{A}{2}\right)+\sin^2\left(\dfrac{A}{2}\right)-2\cos\left(\dfrac{A}{2}\right)\sin\left(\dfrac{A}{2}\right)}{\cos^2\left(\dfrac{A}{2}\right)+\sin^2\left(\dfrac{A}{2}\right)+2\cos\left(\dfrac{A}{2}\right)\sin\left(\dfrac{A}{2}\right)}\end{aligned}

And we know that,

\bullet\ \sin^2\theta+\cos^2\theta=\cos^2\theta+\sin^2\theta=1\\\\\bullet\ 2\sin\theta\cos\theta=2\cos\theta\sin\theta=\sin(2\theta)

Hence, again taking \theta=\dfrac{A}{2}, we get,

\begin{aligned}&\sqrt{\dfrac{\cos^2\left(\dfrac{A}{2}\right)+\sin^2\left(\dfrac{A}{2}\right)-2\cos\left(\dfrac{A}{2}\right)\sin\left(\dfrac{A}{2}\right)}{\cos^2\left(\dfrac{A}{2}\right)+\sin^2\left(\dfrac{A}{2}\right)+2\cos\left(\dfrac{A}{2}\right)\sin\left(\dfrac{A}{2}\right)}\\\\\implies\ \ &\sqrt{\dfrac{1-\sin A}{1+\sin A}}\end{aligned}

Finally,

\large\boxed{\quad\quad\quad\quad\quad\quad\quad\tan\left(45^{\circ}-\dfrac{A}{2}\right)=\sqrt{\dfrac{1-\sin A}{1+\sin A}}\quad\quad\quad\quad\quad\quad\quad}

Hence Proved!

Similar questions