Math, asked by piyushnagar077, 2 days ago

Prove LHS=RHS class 10 maths question Trignometry

Attachments:

Answers

Answered by vipashyana1
0

Answer:

  \sqrt{{ \frac{secθ - 1}{secθ + 1} }} +  \sqrt{ \frac{secθ + 1}{secθ - 1} }  = 2cosecθ \\  \sqrt{{ \frac{secθ - 1}{secθ + 1} }} \times \sqrt{{ \frac{secθ - 1}{secθ  -  1} }} + \sqrt{{ \frac{secθ  +  1}{secθ   -  1} }} \times \sqrt{{ \frac{secθ  +  1}{secθ + 1} }}= 2cosecθ  \\   \sqrt{ \frac{(secθ - 1)(secθ - 1)}{(secθ + 1)(secθ - 1)} }  +  \sqrt{  \frac{(secθ + 1)(secθ + 1)}{(secθ - 1)(secθ + 1)} }= 2cosecθ \\  \sqrt{ \frac{ {(secθ - 1)}^{2} }{ {sec}^{2}θ - 1 } }   +   \sqrt{ \frac{ {(secθ + 1)}^{2} }{ {sec}^{2} θ - 1} }= 2cosecθ \\  \sqrt{ \frac{ {(secθ - 1)}^{2} }{ {tan}^{2}θ } }  +  \sqrt{  \frac{  {(secθ + 1)}^{2} }{ {tan}^{2}θ }  } = 2cosecθ \\  \frac{secθ - 1}{tanθ}  +  \frac{secθ + 1}{tanθ} = 2cosecθ \\  \frac{secθ  + secθ - 1 + 1}{tanθ} = 2cosecθ \\  \frac{2secθ}{tanθ }  = 2cosecθ\\  \frac{2 \times  \frac{ 1  }{cosθ} }{ \frac{sinθ}{cosθ} } = 2cosecθ \\ 2 \times  \frac{1 }{cosθ}  \times  \frac{cosθ}{sinθ}  = 2cosecθ\\ 2 \times  \frac{1}{sinθ}= 2cosecθ  \\ 2cosecθ= 2cosecθ \\LHS=RHS \\ Hence \: proved

Similar questions