Prove LHS = RHS
Cos9x - Cos5x / Sin17x -Sin3x = -Sin2x / cos10x
Answers
Answered by
79
Heya !
_____
_______________________________________________________
★Trigonometry ★
______________________________________________________
→ Taking L.H.S ,
→ Solving and combining the terms we have ,
★ Now , 2 gets cancelled out on the numerator and denominator . Also , Sin 7x gets cancelled as a common factor . Thus we are left with ,
•°• L.H.S = R.H.S
Identities used
=============
_________________________________________________________
_____
_______________________________________________________
★Trigonometry ★
______________________________________________________
→ Taking L.H.S ,
→ Solving and combining the terms we have ,
★ Now , 2 gets cancelled out on the numerator and denominator . Also , Sin 7x gets cancelled as a common factor . Thus we are left with ,
•°• L.H.S = R.H.S
Identities used
=============
_________________________________________________________
Answered by
5
Step-by-step explanation:
Answer:
Step-by-step explanation:
cos A-cos B=-2 sin ((A+B)/2) sin ((A-B)/2)
cos9x-cos 5x=-2 sin((9x+5x)/2) sin((9x-5x)/2)=-2 sin 7x sin2x
sin A -sin B=2 cos ((A+B)/2) sin ((A-B)/2)
sin 17x-sin 3x=2 cos ((17x+3x)/2) sin ((17x-3x)/2)=2 cos 10x sin 7x
Now
cos9x-cos 5x/sin 17x-sin 3x = -2 sin 7x sin2x/2 cos 10x sin 7x
cancel sin7x and 2
Now it becomes
cos9x-cos 5x/sin 17x-sin 3x= - sin2x/cos10x
Similar questions