Math, asked by aliatrivedi0, 1 year ago

Prove LHS = RHS

Cos9x - Cos5x / Sin17x -Sin3x = -Sin2x / cos10x

Answers

Answered by TheInsaneGirl
79
Heya !
_____


_______________________________________________________
★Trigonometry ★
______________________________________________________


 =  >  \frac{cos \: 9x -  \: cos \: 5x}{sin \: 17x - sin3x}  =  \frac{ - sin2x}{cos \: 10x}  \\  \\



→ Taking L.H.S ,


 =  >   \frac{   - 2 \: sin \:  \frac{9x + 5x}{2}  \: sin \:  \frac{9x - 5x}{2} }{2 \: cos \:  \frac{17x + 3x}{2} \: sin \:  \frac{17x - 3x}{2}  }



→ Solving and combining the terms we have ,


 =  >  \frac{ - 2 \: sin \: 7x \: sin \: 2x}{2 \: cos \: 10x \: sin \: 7x}

★ Now , 2 gets cancelled out on the numerator and denominator . Also , Sin 7x gets cancelled as a common factor . Thus we are left with ,


 =  >  \frac{ - sin \: 2x}{cos \: 10x}


•°• L.H.S = R.H.S



Identities used
=============


 =  > cos \: x \:  -  \: cos \: y =  - sin \:  \frac{x + y}{2}  \: sin \:  \frac{x  - y}{2}

 =  > sin \: x \:  -  \: sin \: y = 2 \: cos \:  \frac{x + y}{2}  \: sin \:  \frac{x - y}{2}

_________________________________________________________
Answered by Anonymous
5

Step-by-step explanation:

Answer:

Step-by-step explanation:

cos A-cos B=-2 sin ((A+B)/2) sin ((A-B)/2)

cos9x-cos 5x=-2 sin((9x+5x)/2) sin((9x-5x)/2)=-2 sin 7x sin2x

sin A -sin B=2 cos ((A+B)/2) sin ((A-B)/2)

sin 17x-sin 3x=2 cos ((17x+3x)/2) sin ((17x-3x)/2)=2 cos 10x sin 7x

Now

cos9x-cos 5x/sin 17x-sin 3x = -2 sin 7x sin2x/2 cos 10x sin 7x

cancel sin7x and 2

Now it becomes

cos9x-cos 5x/sin 17x-sin 3x= - sin2x/cos10x

Similar questions