Math, asked by ambidikumari, 10 months ago

prove LHS=RHS pls help me ​

Attachments:

Answers

Answered by ItzAditt007
3

AnswEr:-

To Prove:-

 \\ \tt\longrightarrow \dfrac{1}{ \sec A  +  \tan A }  =  \sec A -  \tan A. \\

ID Used:-

 \\ \tt\longrightarrow \sec \theta =  \frac{1}{ \cos \theta } ... \:  \: id(1) .\\  \\ \tt\longrightarrow \tan \theta =  \frac{ \sin \theta}{ \cos \theta}... \:  \: id(2).  \\  \\ \tt\longrightarrow \sin {}^{2}  \: theta +  \cos {}^{2}  \theta=  1. \\  \\ \tt\longrightarrow \cos {}^{2}  \theta = 1 -  \sin {}^{2} \theta... \:  \: id(3).  \\ \\ \tt\longrightarrow (a+b)(a-b) = a^2-b^2</p><p>..\ \ id(4).\\

Proof:-

Lets simplify LHS:-

 \\ \tt\implies \dfrac{ 1}{ \sec A +  \tan A} . \\  \\  \tt =  \frac{1}{ \frac{1}{ \cos A} +  \frac{ \sin A}{ \cos A}  }. \\  \\   \rm[by \:  \: using \:  \: id(1) \:  \: and \:  \: id(2)]</p><p>. \\  \\  \tt =  \frac{1}{ \frac{1 +  \sin A }{ \cos A} } . \\  \\  \tt =  \frac{ \cos A}{1 +  \sin A} . \\  \\  \tt =  \frac{ \cos A}{1 +  \sin A}  \times  \frac{1 -  \sin A}{1 -  \sin A}. \\  \\  \tt =  \frac{ \cos A(1 -  \sin A}{(1 +  \sin A)(1 -   \sin A)} . \\  \\  \tt =  \frac{ \cos A(1 -  \sin A)}{ {1}^{2}  -  { \sin}^{2}A}. \\  \\  \rm[by \:  \: using \:  \: id(3)].</p><p> \\  \\  \tt =  \frac{  \cos A( 1 -  \sin A)}{ {\cos}^{2} A } .   \\  \\  \rm[by \:  \: using \:  \: id(4)]</p><p>. \\  \\  \tt =  \frac{ \cancel{ \cos A}(1 -  \sin A)}{  \cancel{\cos A }\times  \cos A}.  \\  \\  \tt =  \frac{ 1  -   \sin A}{ \cos A} . \\  \\  \tt =  \frac{1}{ \cos A}  -  \frac{ \sin A}{ \cos A} . \\  \\  \tt =  \sec A -  \tan A = rhs. \\  \\  \rm[by \:  \: using \:  \: id(1) \:  \: and \:  \: id(2)]</p><p>. \\  \\  \rm{ \underline {\underline{ \:  \:  \:  \: HENCE  \:  \:  \:  \:  PROVED.</p><p> \:  \:  \:  \: }}}

\rule{200}2

More Trigonometric IDs:-

\\ \tt\leadsto 1 + \cot^2\theta = cosec^2\theta.\\ \\ \tt\leadsto 1 + \tan^2\theta = \sec^2\theta. \\ \\ \tt\leadsto \sin\theta = \dfrac{1}{cosec\theta}.\\ \\ \tt\leadsto cosec\theta = \dfrac{1}{\sin\theta}.\\ \\ \tt\leadsto \sec\theta = \dfrac{1}{\cos\theta}.\\ \\ \tt\leadsto\cot\theta = \dfrac{1}{\tan\theta}. \\ \\ \tt\leadsto\tan\theta = \dfrac{1}{\cot\theta}.\\

\rule{200}2

Similar questions