Prove lhs = rhs: sec2theta +cosec2theta =sec2theta×cosec2theta
Answers
Answered by
30
Trigonometry
First of all let 'e' instead of theta
Now
We have
sec²e +cosec²e =sec²e×cosec²e
Have to prove LHS = RHS
LHS = sec²e +cosec²e
= (1/cos²e)+(1/sin²e). [As sece = 1/cose and cosece = 1/sine]
=(sin²e + cos²e)/(sin²e.cos²e)
= 1/(sin²e.cos²e). [As sin²e + cos²e = 1]
= (1/sin²e) ×(1/cos²e)
= cosec²e×sec²e = RHS
That's it
Hope it helped (ㆁωㆁ*)
First of all let 'e' instead of theta
Now
We have
sec²e +cosec²e =sec²e×cosec²e
Have to prove LHS = RHS
LHS = sec²e +cosec²e
= (1/cos²e)+(1/sin²e). [As sece = 1/cose and cosece = 1/sine]
=(sin²e + cos²e)/(sin²e.cos²e)
= 1/(sin²e.cos²e). [As sin²e + cos²e = 1]
= (1/sin²e) ×(1/cos²e)
= cosec²e×sec²e = RHS
That's it
Hope it helped (ㆁωㆁ*)
Answered by
5
LHS=1/cos^2theta+1/sin^2theta
sin^2+cos^2/cos^2sin^2
1/cos^2sin^2. (cos^2+sin^2=1)
1/cos^2×1/sin^2
sec^2theta×cosec^2theta.....
thanks
sin^2+cos^2/cos^2sin^2
1/cos^2sin^2. (cos^2+sin^2=1)
1/cos^2×1/sin^2
sec^2theta×cosec^2theta.....
thanks
Similar questions
English,
9 months ago
Computer Science,
9 months ago
Math,
9 months ago
Chemistry,
1 year ago
Biology,
1 year ago