Prove LHS=RHS (SinA+cosecA)^2+(cosA+secA)^2=7+tan^2+cot^2
Answers
Answered by
5
sinA+cosecA)²+(cosA+secA)²=7+tan²+cot²
LHS
=sin²A+2sinAcosecA+cosec²A+cos²A+2cosAsecA+sec²A
=(sin²A+cos²A)+2sinA*1/sinA+2cosA*1/cosA+cosec²A+sec²A
=1+2+2+1+cot²A+1+tan²A
=7+tan²A+cot²A
Hence proved
If satisfied please mark it as brainliest
LHS
=sin²A+2sinAcosecA+cosec²A+cos²A+2cosAsecA+sec²A
=(sin²A+cos²A)+2sinA*1/sinA+2cosA*1/cosA+cosec²A+sec²A
=1+2+2+1+cot²A+1+tan²A
=7+tan²A+cot²A
Hence proved
If satisfied please mark it as brainliest
Answered by
0
Similar questions