Math, asked by manchenihar1234, 1 month ago

prove limit n tends to infinity n^1/n =1​

Answers

Answered by durgeshbishi2
2

Answer: limit n tends to infinity n^1/n =1​

Step-by-step explanation:

As the limit n tends to infinity \frac{n^{1} }{n} =1

So let \frac{1}{n} =x\\

When n\rightarrow \infty, x=0

\xrightarrow[x\rightarrow \infty]{lim}(\frac{1}{n})^{\frac{1}{n}}

=\xrightarrow[x\rightarrow 0]{lim}(x)^{x}\\=e(ln \xrightarrow[x\rightarrow 0]{lim(x)^{x}})\\=e(\xrightarrow[x\rightarrow 0]{lim}xln x)\\=e(\xrightarrow[x\rightarrow 0]{lim}\frac{lnx}{\frac{1}{x}})\\=e(\xrightarrow[x\rightarrow 0]{lim}\frac{\frac{d}{dx}(ln x)}{\frac{d}{dx}(\frac{1}{x})})

So now we have an indeterminate form \frac{\infty }{\infty } , where L's hospital rule applies,

= e (\xrightarrow[x\rightarrow 0]{lim}\frac{\frac{1}{x}}{-\frac{1}{x^{2}}})\\=e(\xrightarrow[x\rightarrow 0]{lim}(-x))\\=e^{0}\\=1

Hence, limit n tends to infinity n^1/n =1​

#SPJ2

Similar questions