Math, asked by roopika20057, 6 months ago

prove log 32 base 2 =5 using formula log mn base a = log m base a +log n base a​

Answers

Answered by Thesolver
2
I hope it will help you
Attachments:
Answered by pulakmath007
22

SOLUTION

TO PROVE

 \sf{ log_{2}(32) = 5  \: }

FORMULA TO BE IMPLEMENTED

 \sf{1. \:  \:  \:  log_{a}(mn) =  log_{a}(m)   +  log_{a}(n) \: }

 \sf{2. \:  \:  \:  log_{a}(a) = 1  \: }

PROOF

 \sf{ log_{2}(32) }

 =  \sf{ log_{2}(2 \times 16) }

 =  \sf{ log_{2}(2 )  +  log_{2}(16) } \: (by \: formula \: 1)

 =  \sf{ log_{2}(2 )  +  log_{2}(2 \times 8) } \:

 =  \sf{ log_{2}(2 )  +   log_{2}(2) +  log_{2}(16) }  \: (by \: formula \: 1)

 =  \sf{2 log_{2}(2 )  +  log_{2}(8) } \:

 =  \sf{2 log_{2}(2 )  +  log_{2}(2 \times 4) } \:

 =  \sf{2 log_{2}(2 )  +  log_{2}(2)  +  log_{2}( 4) } \: (by \: formula \: 1)

 =  \sf{3 log_{2}(2 )    +  log_{2}( 4) } \:

 =  \sf{3 log_{2}(2 )    +  log_{2}( 2 \times 2) } \:

 =  \sf{3 log_{2}(2 )  +  log_{2}(2)    +  log_{2}( 2) } \: (by \: formula \: 1)

 =  \sf{5 log_{2}(2 )  } \:

 =  \sf{(5 \times 1)  } \:  \:  \: (by \: formula \: 2)

  = \sf{5}

Therefore

 \sf{ log_{2}(32) = 5  \: }

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

log₁₀(10.01),Find approximate value.

https://brainly.in/question/5598224

Similar questions