English, asked by muskansethi, 1 year ago

prove m-n=2 (question in the picture above=

Attachments:

rakeshmohata: at the denominator.. should there be 2 multiplied?
muskansethi: i have posted a picture

Answers

Answered by rakeshmohata
3
Hope u like my process
======================
 \frac{ {9}^{n + 1}  \times  { {3}^{ (-  \frac{n}{2}) } }^{ - 2}  -  {27}^{n} }{( {3}^{m}  \times 2)^{3}  }  =  \frac{1}{729} \\ or. \:  \frac{ { {3}^{2} }^{(n + 1)}  \times  {3}^{n} -  {3}^{3n}  }{ {3}^{3m} \times 2^{3}  }  =  {3}^{ - 6}  \\ or. \:   {3}^{2n + 2 + n}  -  {3}^{3n}  =  8 \times {3}^{3m}   \times  {3}^{ - 6}  \\ or. \:  {3}^{3n} ( {3}^{2}  - 1) = 8 \times  {3}^{3m - 6}  \\ or. \: 8 \times  {3}^{3n}  = 8 \times  {3}^{3m - 6 }  \\  \\ so..3n = 3m - 6 \\ or. \: 3m - 3n = 6 \\ or. \: m - n = 2....proved..
Hope this is ur required answer
Proud to help you
Similar questions