Math, asked by santoshsub60, 2 months ago

Prove me that cosA + sinA by cosA - sinA = 1 + tanA by 1 - tanA​

Attachments:

Answers

Answered by MissTanya
13

To ProVe :-

  •  \sf\frac{cos A+ sin A}{cos A  -  sin A} =  \frac{1+tan A}{1 -  tan A}

As wE kNow ThaT :-

  • \large\sf\red{ \frac{sinA}{cosA} =tanA }

ProOf :-

 \large\sf Taking \:  L.H.S.  = \frac{cos A+ sin A}{cos A  -  sin A}

On dividing both the numerator and the denominator by cosA. We get,

\sf  \:  L.H.S.  = \frac{ \frac{ cos A+ sin A}{cosA} }{ \frac{cos A  -  sin A}{cosA }}

\sf  \:  L.H.S.  = \frac{ \frac{ cos A}{cosA}  +  \frac{sin A}{cos A} }{ \frac{cos A  }{cosA } -  \frac{ sin A}{cos A  } }

\sf  \:  L.H.S.  = \frac{ 1+  {tan A} }{ 1- tan A   }

\sf  \:  L.H.S.  =R.H.S.

Hence, Proved!!

Similar questions