Prove mid point theorem
Answers
Answered by
2
hope it helps you...
Attachments:
sru8:
plz mark as brainliest
Answered by
3
The line segment joining the mid-points of two sides of a triangle is parallel to the third side and equal to half the third side.
Given: In triangle ABC, P and Q are mid-points of AB and AC respectively.
To Prove: i) PQ || BC ii) PQ = 1 2 BC
Construction: Draw CR || BA to meet PQ produced at R.
Proof:
∠QAP = ∠QCR (Pair of alternate angles) ---------- (1)
AQ = QC (∵ Q is the mid-point of side AC) ---------- (2)
∠AQP = ∠CQR (Vertically opposite angles) ---------- (3)
Thus, ΔAPQ ≅ ΔCRQ (ASA Congruence rule)
PQ = QR (by CPCT) or PQ = 1 2 PR ---------- (4)
⇒ AP = CR (by CPCT) ........(5)
But, AP = BP (∵ P is the mid-point of the side AB)
⇒ BP = CR
Also. BP || CR (by construction)
In quadrilateral BCRP, BP = CR and BP || CR
Therefore, quadrilateral BCRP is a parallelogram.
BC || PR or, BC || PQ
Also, PR = BC (∵ BCRP is a parallelogram)
⇒ 1 2 PR = 1 2 BC
⇒ PQ = 1 2 BC [from (4)]
Similar questions