Physics, asked by Anonymous, 11 months ago

Prove mirror formula in convex mirror​

Answers

Answered by Anonymous
8

\color{darkblue}\underline{\underline{\sf Given-}}

PB = -u

PB' = +v

PC = +R

PF = +f

\underline{\rm In \:\triangle ABC\: and \: \triangle A'B'C}

\implies{\sf \dfrac{AB}{A'B'}=\dfrac{BC}{B'C}\:\:\:→(1) }

\underline{\rn In \: \triangle MNF \: and \: \triangle A'B'F-}

\implies{\sf \dfrac{MN}{A'B'}=\dfrac{NF}{B'F}}

N = P

\implies{\sf \dfrac{MP}{A'B'}=\dfrac{PF}{B'F}\:\:\:\:(2)}

\underline{\rm From \: equation \: 1\: and \:2}

\implies{\sf \dfrac{BC}{B'C}=\dfrac{PF}{B'F}}

\implies{\sf \dfrac{PB+PC}{PC-PB'}=\dfrac{PF}{PF-PB'}}

\implies{\sf \dfrac{-u+R}{+R-v}=\dfrac{+f}{+f-v}}

We know that R = 2f

\implies{\sf \dfrac{-u+2f}{2f-v}=\dfrac{+f}{+f-v}}

\implies{\sf (-u+2f)(f-v)=f(2f-v)}

\implies{\sf -uf+uv+2f^2-2fv=2f^2-vf}

\implies{\sf -uf+uv=vf }

\underline{\rm On\; dividing \: uvf \: both \: side }

\implies{\sf \dfrac{-uf}{uvf}+\dfrac{uv}{uvf}=\dfrac{vf}{uvf}}

\implies{\sf -\dfrac{1}{v}+\dfrac{1}{f}=\dfrac{1}{u}}

\large\color{red}\bullet\underline{\boxed{\sf \dfrac{1}{f}=\dfrac{1}{v}+\dfrac{1}{u}}}

Attachments:
Answered by pratyushpandey3352
0

Answer:

see photo carefully....

hope this helps you....

please mark me as braienliest

Attachments:
Similar questions