Math, asked by hitishi785, 3 months ago

prove nCr + nCr-1 = n+1Cr​

Answers

Answered by BrainlyTwinklingstar
2

Given :

 \sf ^nC_r + \:  ^nC_{r-1} =  \: ^{n+1}C_r

 \sf LHS = ^nC_r + ^nC_{r-1}

\sf = \dfrac{n!}{(n-r)!r!} + \dfrac{n!}{(n-(r-1))!(r-1)!}

\sf = \dfrac{n!}{(n-r)!r(r - 1) !} + \dfrac{n!}{(n-r + 1)(n - r)!(r-1)!}

\sf = \dfrac{n!}{(n-r)!(r - 1) !}  \:  \bigg[ \dfrac{1}{r} +  \dfrac{1}{n - r + 1}   \bigg]

\sf = \dfrac{n!}{(n-r)!(r - 1) !}  \:  \bigg[  \dfrac{n - r + 1 + r}{r(n - r + 1)}   \bigg]

\sf = \dfrac{n!(n + 1)}{ \bigg[(n-r)!(n - r  +  1) !\bigg]\bigg[r(r - 1)!\bigg]}

\sf = \dfrac{(n + 1)!}{(n +  1 - r) ! \: r!}

 \sf =  \: ^{n+1}C_r  \: \:  (RHS)

LHS = RHS

Hence proved !!

Similar questions