Math, asked by gr8glory08, 10 months ago

prove= opposite angles of a cyclic quadrilateral are supplementary

the first one to answer will be marked as brainliest or at the least given 5stars

Answers

Answered by Anonymous
44

Reference of image is in diagram

AnsWer :

\large\textrm{\underline{Given-}}

\bullet ABCD is a cyclic quadrilateral. O is the centre.

\large\textrm{\underline{To \; prove-}}

\bullet Sum of opposite angles of cyclic quadrilateral is \bf\ 180^{\circ} (i.e. <BAD + <BCD = 180°)

\large\textrm{\underline{Construction:}}

\bullet Join OB and OD.

\large\textrm{\underline{ Proof -}}

\underline{\dag\:\textsf{According \: to \: given \: in \: question:}}

\normalsize\ : \implies\sf\ BAD = \frac{1}{2} \times\ BOD \: \: \:----(eq.1)

\:\:\normalsize\sf\  [\therefore\ Angle \: subtended \: by \: arc \: at \: centre \: is \: double \: of \: angle \: on \: circle]

\normalsize\ : \implies\sf\ BCD = \frac{1}{2} reflex \: of \: BOD \: \: \: ----(eq.2)

\underline{\dag\:\textsf{Adding \: eq.1 \: and \: eq.2, \: we \: get:}}

\normalsize\ : \implies\sf\ BAD + BCD = \frac{1}{2}[BOD + reflex \: of \: BOD]

\normalsize\ : \implies\sf\ BAD + BCD = \frac{1}{\cancel{2}} \times\ \cancel{360^{\circ}}  \\ \\ \normalsize\ : \implies\sf\ BAD + BCD = 180^{\circ}

\large\ : \implies{\boxed{\sf{ Hence \: proved!! }}}

Attachments:

Anonymous: An awesome girl wrote an awesome answer. xD
Similar questions