prove: opposite angles of cyclic quadrilateral are supplementary
Answers
Step-by-step explanation:
Given : A cyclic quadrilateral $$ABCD$$.
To Prove : $$\angle A + \angle C = {180}^{o}$$
$$\angle B + \angle D = {180}^{o}$$
Construction : Let $$O$$ be the centre of the circle. Join $$O$$ to $$B$$ and $$D$$. Then let the angle subtended by the minor arc and the major arc at the centre be $${x}^{o}$$ and $${y}^{o}$$ respectively.
Proof : $${ x }^{ o }=2\angle C$$ [Angle at centre theorem] ...(i)
$${ y }^{ o }=2\angle A$$ ...(ii)
Adding (i) and (ii), we get
$${ x }^{ o }+{ y }^{ o }=2\angle C+2\angle A$$ ...(iii)
But, $${ x }^{ o }+{ y }^{ o }={ 360 }^{ o }$$ ....(iv)
From (iii) and (iv), we get
$$2\angle C+2\angle A={ 360 }^{ o }$$
$$\Rightarrow$$ $$ \angle C+\angle A={ 180 }^{ o }$$
But we know that angle sum property of quadrilateral
$$\angle A+\angle B+\angle C+\angle D={ 360 }^{ o }$$
$$\angle B+\angle D+{ 180 }^{ o }={ 360 }^{ o }$$
$$\angle B+\angle D={ 180 }^{ o }$$
Hence proved.
solution
Please mark as brainlist
Answer:
❀given:
let ABCD is cyclic quadrilateral
❀ To Prove:
∠A+ ∠C=180° and ∠B+∠D=180°
❀proof:
∠BOD=2 ∠BAD
∠BAD=∠BOD
Similarly ∠BCD=∠DOB
∠BAD +∠BCD=∠BOD+∠DOB
=(∠BOD+∠DOB)
=(×360°=180°
similarly ∠B+∠D=180°