Math, asked by swezaldias, 5 months ago

Prove or disprove: For any sets A and B, P(A x B) = P(A) x P(B).​

Answers

Answered by mhetreasmita1
14

Answer:

 \huge \bf{answer:-} \\ \rm \:  For  \: any  \: set  \: AA, we \:  let \:  P(A) \: P(A) \:  denotes \:  \\  \rm \:  the \:  power  \: set  \: of  \: AA  \\  \rm i.e.  \: the  \: set  \: of  \: all \:  subsets \:  of  \: AA.  \\  \rm \: We  \: will  \: show \:  that: \\  \\ { \bigstar} \rm \: P(A)∪P(B)⊆P(A∪B)P(A)∪P(B)⊆P(A∪B) \\ </p><p> \rm \: Since \:  A⊂A∪B \:  so \:  every  \: subset  \: of  \: AA  \\ \:   \rm \: is \:  also \:  a  \: subset \:  of  \: A∪BA∪B, \\   \rm \: therefore \:  P(A)⊆P(A∪B)P(A)⊆P(A∪B). \\  \rm \:  Like \:  \rm \: wise, P(B)⊆P(A∪B)P(B)⊆P(A∪B). \\   \rm \: Therefore, P(A)∪P(B)⊆P(A∪B)P(A)∪P(B)⊆P(A∪B). \\ P(A∪B)⊈P(A)∪P(B)P(A∪B)⊈P(A)∪P(B) \\ </p><p></p><p>Suppose A={1}A={1}, B={2}B={2} . So, A∪B={1,2}A∪B={1,2}.</p><p></p><p>P(A)={∅,{1}},P(A)={∅,{1}}, P(B)={∅,{2}}P(B)={∅,{2}}</p><p></p><p>P(A∪B)={∅,{1},{2},{1,2}}⊈{∅,{1},{2}}=P(A)∪P(B)</p><p>

Answered by divekarsankalp988
0

my sister's right answer friend ⬆⬆⬆⬆⬆

the is Right in the poem

Similar questions