prove perpendicular axis theorem
Answers
Answer:
According to the theorem the moment of inertia of a plane lamina about any axis (OZ) perpendicular to plane is equal to sum of moment of inertia about any two perpendicular axis (OX & OY) in the plane.
⇒ I = Iₓ + Iᵧ [Formula]
Explanation:
Proof:
Suppose the lamina consist of n particles of mass m₁ + m₂ +.........+ mₙ and respective distance are r₁ + r₂ +........+ rₙ.
Moment of inertia about 'x' axis:
⇒ Iₓ = m₁y₁² + m₂y₂² +...........+mₙyₙ² ______(1)
Moment of inertia about 'y' axis.
⇒ Iᵧ = m₁x₁² + m₂x₂² +...........+ mₙxₙ² ______(2)
Moment of inertia about 'z' axis.
⇒ I = m₁r₁² + m₂r₂² +............+ mₙrₙ² ______(3)
In general,
⇒ Iₓ = My² _____(4)
⇒ Iᵧ = Mx² _____(5)
Now, add equation (4) & (5), we get
⇒ Iₓ + Iᵧ = M(x² + y²)
⇒ Iₓ + Iᵧ = Mr²
⇒ Iₓ + Iᵧ = Iz
#answerwithquality
#BAL