PROVE
Pqsquar=4MPsquar - 3PRsquar
Attachments:
Answers
Answered by
9
EXPLANATION.
⇒ In ΔPQR.
M is the midpoint of QR.
⇒ ∠PRQ = 90°.
To prove : (PQ)² = 4PM² - 3PR².
As we know that,
Formula of Pythagoras Theorem.
⇒ [Hypotenuse]² = [Perpendicular]² + [Base]².
⇒ H² = P² + B².
In ΔPRM.
⇒ (PM)² = (PR)² + (RM)². - - - - - (1).
⇒ In ΔPRQ.
⇒ (PQ)² = (PR)² + (RQ)².
⇒ RQ = RM + MQ.
⇒ RQ = RM + RM.
⇒ RQ = 2RM.
⇒ (PQ)² = (PR)² + (RM + MQ)².
⇒ RM + MQ = 2RM.
⇒ (PQ)² = (PR)² + (2RM)².
⇒ (PQ)² = (PR)² + 4(RM)².
Put the value of (RM)² = (PM)² - (PR)².
⇒ (PQ)² = (PR)² + 4[PM² - PR²].
⇒ PQ² = PR² + 4PM² - 4PR².
⇒ PQ² = 4PM² - 3PR².
Hence Proved.
Answered by
1
Step-by-step explanation:
given :
PROVE
Pqsquar=4MPsquar - 3PRsquar
to find :
Pqsquar=4MPsquar - 3PRsquar
solution :
- pq = 4pm - 3 pR
Attachments:
Similar questions