Math, asked by sowmya03bhaskar, 6 months ago

prove Pythagoras theorem​

Answers

Answered by sarikagothankar2
1

Answer:is this right Step-by-step explanation:So please can you please mark me as brainlist please i need itplease!!!!pleaseplease

mark me as brainlist

please

i will follow you

promise

Attachments:
Answered by Loveleen68
1

Answer:

Proof:

Proof:We know, △ADB ~ △ABC

Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)

Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)

Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABC

Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)

Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)

Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,

Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × AC

Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × ACAB2 + BC2 = AC (AD + CD)

Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × ACAB2 + BC2 = AC (AD + CD)Since, AD + CD = AC

Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × ACAB2 + BC2 = AC (AD + CD)Since, AD + CD = ACTherefore, AC2 = AB2 + BC2

Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × ACAB2 + BC2 = AC (AD + CD)Since, AD + CD = ACTherefore, AC2 = AB2 + BC2Hence, the Pythagorean theorem is proved.

Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × ACAB2 + BC2 = AC (AD + CD)Since, AD + CD = ACTherefore, AC2 = AB2 + BC2Hence, the Pythagorean theorem is proved.Note: Pythagorean theorem is only applicable to Right-Angled triangle.

Attachments:
Similar questions