prove Pythagoras theorem
Answers
Answer:is this right Step-by-step explanation:So please can you please mark me as brainlist please i need itplease!!!!pleaseplease
mark me as brainlist
please
i will follow you
promise
Answer:
Proof:
Proof:We know, △ADB ~ △ABC
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABC
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × AC
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × ACAB2 + BC2 = AC (AD + CD)
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × ACAB2 + BC2 = AC (AD + CD)Since, AD + CD = AC
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × ACAB2 + BC2 = AC (AD + CD)Since, AD + CD = ACTherefore, AC2 = AB2 + BC2
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × ACAB2 + BC2 = AC (AD + CD)Since, AD + CD = ACTherefore, AC2 = AB2 + BC2Hence, the Pythagorean theorem is proved.
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC (corresponding sides of similar triangles)Or, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × ACAB2 + BC2 = AC (AD + CD)Since, AD + CD = ACTherefore, AC2 = AB2 + BC2Hence, the Pythagorean theorem is proved.Note: Pythagorean theorem is only applicable to Right-Angled triangle.