Math, asked by mohit12394, 2 months ago

Prove: Pythagoras Theorem​

Answers

Answered by ITzCrazyBoy95
0

Answer:

Pythagoras theorem states that “In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides“. The sides of this triangle have been named as Perpendicular, Base and Hypotenuse. Here, the hypotenuse is the longest side, as it is opposite to the angle 90

Answered by jafarahemed9
2

Answer:

In a right triangle square of hypotenuse is equal to sum of other two sides square

Step-by-step explanation:

Given: A right-angled triangle ABC, right-angled at B.

To Prove- AC2 = AB2 + BC2

Construction: Draw a perpendicular BD meeting AC at D.

Pythagoras theorem Proof

Proof:

We know, △ADB ~ △ABC

Therefore, ADAB=ABAC (corresponding sides of similar triangles)

Or, AB2 = AD × AC ……………………………..……..(1)

Also, △BDC ~△ABC

Therefore, CDBC=BCAC (corresponding sides of similar triangles)

Or, BC2= CD × AC ……………………………………..(2)

Adding the equations (1) and (2) we get,

AB2 + BC2 = AD × AC + CD × AC

AB2 + BC2 = AC (AD + CD)

Since, AD + CD = AC

Therefore, AC2 = AB2 + BC2

Hence, the Pythagorean theorem is proved.

Similar questions