Math, asked by 2004nived, 9 months ago

Prove question no. 42

Attachments:

Answers

Answered by Anonymous
6

On taking L.H.S. :

 \frac{ \cos \alpha  }{1 -  \tan \alpha }  +  \frac{ \sin\alpha }{1 -  \cot \alpha  }  \\  \\  =  &gt;  \frac{ \cos\alpha  }{1 -  \tan \alpha }  +  \frac{ \sin \alpha }{1 -  \frac{1}{ \tan\alpha  } }  \\  \\  =  &gt;  \frac{ \cos \alpha }{1 -  \tan \alpha  }  +  \frac{ \sin \alpha  }{ \tan \alpha - 1 }  \times  \tan\alpha  \\  \\  =  &gt;  \frac{ \cos\alpha  }{1 -  \tan\alpha }  -  \frac{ \sin \alpha  \tan \alpha   }{1 -  \tan\alpha  } \\  \\  =  &gt;  \frac{ \cos \alpha -  \sin \alpha  \tan\alpha    }{1 -  \tan \alpha }   \\  \\  =  &gt;  \frac{ \cos \alpha -  \sin \alpha \times  \frac{ \sin\alpha }{ \cos\alpha }    }{1 -  \frac{ \sin\alpha }{ \cos \alpha  } }  \\  \\  =  &gt;  \frac{ { \cos}^{2}  \alpha  -  {  \sin  }^{2} \alpha  }{ \cos\alpha  }  \times  \frac{ \cos \alpha  }{ \cos\alpha -  \sin\alpha   }  \\  \\  =  &gt;  \cos \alpha  +  \sin \alpha  \\  \\  =  &gt;  \sin\alpha  +  \cos \alpha  = </strong><strong>R.H.S</strong><strong>.</strong><strong>

HENCE PROVED ✔️✔️

I hope it will be helpful for you ✌️✌️

Mark it as brainliest and...

Fóllòw ☺️☺️

Answered by Tomboyish44
5

Question: To Prove that;

\boxed{\sf \dfrac{cosA}{1 - tanA} + \dfrac{sinA}{1 - cotA} = sinA + cosA}

Identities and Ratios used to solve the question.

\Longrightarrow \ \sf tanA = \frac{sinA}{cosA}

\Longrightarrow \ \sf cotA = \frac{cosA}{sinA}

\Longrightarrow \ \sf (a-b) = -(b-a)

\Longrightarrow \ \sf a^2 - b^2 = (a+b)(a-b)

Proof:

\sf LHS = \dfrac{cosA}{1 - tanA} + \dfrac{sinA}{1 - cotA}

\Longrightarrow \ \sf \dfrac{cosA}{1 - \frac{sinA}{cosA}} + \dfrac{sinA}{1 -  \frac{cosA}{sinA}}

\Longrightarrow \ \sf \dfrac{cosA}{\frac{cosA - sinA}{cosA}} + \dfrac{sinA}{\frac{sinA - cosA}{sinA}}

Denominator is transferred to the numerator.

\Longrightarrow \ \sf \dfrac{cos^2A}{cosA - sinA} + \dfrac{sin^2A}{sinA - cosA}

Using the formula (a - b) = - (b + a) we get,

\Longrightarrow \ \sf \dfrac{cos^2A}{cosA - sinA} - \dfrac{sin^2A}{cosA - sinA}

\Longrightarrow \ \sf \dfrac{cos^2A - sin^2A}{cosA - sinA}

Using a² - b² = (a + b)(a - b) we get,

\Longrightarrow \ \sf \dfrac{(cosA + sinA)(cosA - sinA)}{cosA - sinA}

Cancelling like terms we get,

\Longrightarrow \ \sf cosA + sinA

LHS = RHS

Hence Proved.

Similar questions