Math, asked by merakisiddkaundilya, 3 months ago

prove root 3 iraational?

Answers

Answered by Hitlerdidi
6

Answer:

Let us assume to the contrary that √3 is a rational number.

It can be expressed in the form of p/q

where p and q are co-primes and q≠ 0.

⇒ √3 = p/q

⇒ 3 = p2/q2 (Squaring on both the sides)

⇒ 3q2 = p2………………………………..(1)

It means that 3 divides p2 and also 3 divides p because each factor should appear two times for the square to exist.

So we have p = 3r

where r is some integer.

⇒ p2 = 9r2………………………………..(2)

from equation (1) and (2)

⇒ 3q2 = 9r2

⇒ q2 = 3r2

Similar questions