Math, asked by Ishant127, 1 year ago

Prove root 3 is irrational.

Answers

Answered by Anonymous
0

\underline{\bf \: Correct \: Question:-}}}

\rm \: Prove \: that \: \sqrt{3}  \: is \: irrational.

\underline{\bf \: Solution:-}}

\rm \: Let \: us \: assume, \: to \: the \: contrary ,\: that\\\rm \: \sqrt{3}  \: is \: rational.

\rm \: So, \: we \: can \: find \: coprime \: integers \: a \: and \\\rm \: b \: (\neq \: 0) \: such \: that

\rm \: \sqrt{3} = \: \frac{a}{b} \: where \: a \: and \: b \: are \: co-prime \: i.e.,\\\rm \: their \: HCF \: is \: 1 . \: \: \: \: \: \: \: \: \: \: \: \: \: \: ...[Eq. \: (1)]

\implies \: \rm \: \sqrt{3b} =a

\rm \: Squaring \: on \: both \: side, \: we \: get\\\rm \: 3b^{2} =a^{2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ...[Eq. \: (2)]

\rm \: Therefore, \: 3 \: divides \: a^{2} .\: But \: 3 \: is \: prime

\rm \: Therefore, \: 3 \: divides \: a \: also

\rm \: \therefore \: a=3c \: for \: some \: integer \: c.

\rm \: Putting \: this \:  value \: of \: a \: in \: Eq. \: (2),

\rm \: 3b^{2} =9c^{2}

\rm \: \implies \: Dividing \: by \: 3, \: b^{2} =3c^{2}

\rm \: This \: means \: that \: 3 \: divides \: b^{2} , \: and \:  so \: 3 \\\rm \: divides \: b, \: also \: \: \: \: \: \: \: \: \:  \: \: \: \: \: \: (\because \: 3 \: is \: prime)

\rm \: Therefore, \: a \: and \: b \: have \: 3 \: as \: a \: common\\\rm \: factor.

But this contradicts ( 1 ) namely the fact

that a and be have no common factor other

than 1.

\rm \: This \: contradiction \: arose \: because \: of \: our\\\rm \: incorrect \: assumption \: that \: \sqrt{3}  \: is \: rational.

\rm \: So, \: we \: conclude \: that \: \sqrt{3}  \: is \: irrational.

Similar questions