Math, asked by djjdos, 5 months ago

Prove :
√{(sec θ – 1)/(sec θ + 1)}  =  cosec θ - cot θ

Answers

Answered by Anonymous
4

➡️Let A  =  √{(sec θ – 1)/(sec θ + 1)} and B  =  cosec θ - cot θ.

↠A  =  √{(sec θ – 1)/(sec θ + 1)}

↠A  =  √[{(sec θ - 1) (sec θ - 1)}/{(sec θ + 1) (sec θ - 1)}]

↠A  =  √{(sec θ - 1)2 / (sec2θ - 1)}

↠A  =  √{(sec θ - 1)2 / tan2θ}

↠A  =  (sec θ – 1)/tan θ

↠A  =  (sec θ/tan θ) – (1/tan θ)

↠A  =  {(1/cos θ)/(sin θ/cos θ)} - cot θ

↠A  =  {(1/cos θ) ⋅ (cos θ/sin θ)} - cot θ

↠A  =  (1/sin θ) - cot θ

↠A  =  cosec θ - cot θ

↠A  =  B  (Proved)

Similar questions