Prove :
√{(sec θ – 1)/(sec θ + 1)} = cosec θ - cot θ
Answers
Answered by
4
➡️Let A = √{(sec θ – 1)/(sec θ + 1)} and B = cosec θ - cot θ.
↠A = √{(sec θ – 1)/(sec θ + 1)}
↠A = √[{(sec θ - 1) (sec θ - 1)}/{(sec θ + 1) (sec θ - 1)}]
↠A = √{(sec θ - 1)2 / (sec2θ - 1)}
↠A = √{(sec θ - 1)2 / tan2θ}
↠A = (sec θ – 1)/tan θ
↠A = (sec θ/tan θ) – (1/tan θ)
↠A = {(1/cos θ)/(sin θ/cos θ)} - cot θ
↠A = {(1/cos θ) ⋅ (cos θ/sin θ)} - cot θ
↠A = (1/sin θ) - cot θ
↠A = cosec θ - cot θ
↠A = B (Proved)
Similar questions