Math, asked by swaruu, 4 months ago

Prove
Sec^2 + cosec^2
Sec^2 x cosec^2​

Answers

Answered by anurag2147
1

sec² + cosec² = 1/cos² + 1/sin².

= cos²+sin²/ cos²sin²

= 1/cos²sin²

= sec² cosec²

Answered by brokendreams
0

Step-by-step explanation:

Given : A trigonometric equation.

To Prove : sec^2x+cosec^2x=sec^2x*cosec^2x

Trigonometric identities used :

  1. sec^2x=\frac{1}{cos^2x}
  2. cosec^2x=\frac{1}{sin^2x}
  3. sin^2x+cos^2x=1
  • Proof :

We have,

⇒  sec^2x+cosec^2x=sec^2x*cosec^2x

taking L.H.S separately to solve equation,

⇒  sec^2x+cosec^2x

by using identity (1) and (2) we get,

⇒  \frac{1}{cos^2x} +\frac{1}{sin^2x}

taking L.C.M as cos^2x*sin^2x,

⇒  \frac{sin^2x+cos^2x}{cos^2x*sin^2x}

by using identity (3),

⇒  \frac{1}{cos^2x*sin^2x}

or   \frac{1}{cos^2x} *\frac{1}{sin^2x}

again using identity (1) and (2),

⇒  sec^2x*cosec^2x.

Hence proved, L.H.S=R.H.S or  sec^2x+cosec^2x=sec^2x*cosec^2x .

Similar questions