prove sec A-1/tan A = secA + tanA-1/ secA + tan A+1
Answers
Answer:
secA + tanA - 1 / tanA - sec + 1 = cosA / 1 - sinA
LHS = secA + tanA - 1 / tanA - secA + 1
=secA + tanA - (sec²A - tan²A) / tanA - secA + 1 (1 + tan²A = sec²A)
=(secA + tanA) - (secA + tanA)(secA - tanA) / tanA - secA + 1
=(secA + tanA){1 - (secA - tanA)} / tanA - secA + 1
=(secA + tanA)(1 - secA + tanA) / tanA - secA + 1
=secA + tanA
=1 / cosA + sinA / cosA
=1+sinA/cosA
RHS=cosA/1 - sinA
=(cosA/1 - sinA) X (1 + sinA / 1 + sinA)
=cosA(1 + sinA) / (1 - sinA)(1 + sinA)
=cosA(1 + sinA) / 1 - sin²A (sin²A + cos2A = 1)
=cosA(1 + sinA) / cos²A
RHS =1 + sinA / cosA = LHS
Hence proved
Answer:
RHS is 1+sinA/cosA=LHS hence verified