Math, asked by veshanveshan, 2 months ago

Prove sec A /cot A + tan A = Cos A​

Answers

Answered by manasijena8679
2

LHS=(secA-cosA) * (cotA+tanA)

LHS=(secA-cosA) * (cotA+tanA)=(1/cosA - cosA) * cosA/sinA + sinA/cosA)

LHS=(secA-cosA) * (cotA+tanA)=(1/cosA - cosA) * cosA/sinA + sinA/cosA)=(1-cos^2A)/cosA * (sin^2A + cos^2A ) / sinA cosA)

LHS=(secA-cosA) * (cotA+tanA)=(1/cosA - cosA) * cosA/sinA + sinA/cosA)=(1-cos^2A)/cosA * (sin^2A + cos^2A ) / sinA cosA)={(sin^2A) /cosA}*(1/sinA cosA)

LHS=(secA-cosA) * (cotA+tanA)=(1/cosA - cosA) * cosA/sinA + sinA/cosA)=(1-cos^2A)/cosA * (sin^2A + cos^2A ) / sinA cosA)={(sin^2A) /cosA}*(1/sinA cosA)=sinA/cos^2A = (sin A/cosA)*(1/cosA)=tanA*secA=RHS

Hope it will be helpful for you dear... Please mark me as a brainliest answer

Similar questions