Math, asked by kingkhan85902, 9 months ago

prove ( sec A + tan A ) ( 1 - sin A ) = cos A

Answers

Answered by 246884
1

it will definitely help you

Attachments:
Answered by sonisiddharth751
3

Answer:

\large\bf\underline\red{Question ➡} \\  \\\bf prove \: that :  -  \\ \bf \: (secA \:  + tanA)(1 - sinA) = cosA \\  \\ \large\bf\underline\blue{some \: basic \: information➡} \\  \\  \bf\bigstar \: secA \:  =  \frac{1}{cosA}  \\  \\ \bf\bigstar \:tanA =  \frac{sinA}{cosA}  \\  \\ \bf\bigstar \: 1 -  {sinA}^{2}  =  {cosA}^{2}  \\  \\ \large\bf\underline\blue{solution➡} \:  \\  \\ \sf \: (secA \:  + tanA)(1 - sinA) = cosA \\  \\\bf  \underline{LHS}  \\  \\➡\sf \: ( \frac{1}{cosA}  +  \frac{sinA }{cosA} )(1 - sinA) \\  \\ ➡\sf \: ( \frac{1 +sinA }{cosA} )(1 - sinA) \\  \\ ➡\sf \:  \frac{1 -  {sinA}^{2} }{cosA}  \\  \\  \sf \underline{(using \: 1 -  {sinA}^{2} =  {cosA}^{2} )  } \\  \\  ➡\sf \:  \frac{ {cosA}^{2} }{cosA}  \\ ➡\sf \:  \frac{ { \cancel{¹cosA}}^{2} }{ \cancel{cosA}  } \\  \\➡\sf \: cosA \\  \\➡\sf \:   RHS \\  \\  \bf \underline{therefore : -  } \\  \\\large{\boxed{\mathtt\red{\fcolorbox{magenta}{aqua}{LHS=RHS}}}}

Similar questions