prove (sec A + tan A)*2 = cosec A + 1/cosec A - 1
Answers
Answered by
2
Step-by-step explanation:
LHS :
(secA + tanA)²
( 1/cosA + sinA/cosA)²
(1 + sinA)² / cos²A
we know that ,
cos²A = 1 - sin²A
(1+sinA) (1 + sinA) / {1 - sin²A}
Also ,
1 - sin²A = (1+sinA) (1 - sinA) [ ∵ a² - b² = (a+b) (a - b) ]
(1+sinA) (1 + sinA) / (1+sinA) (1 - sinA)
(1 + sinA ) gets cancelled on numerator and denominator ,
=> 1 + sinA / 1 - sinA
sinA = 1/cosecA
=> 1 + ( 1/cosecA) / [ 1 - (1/cosecA) ]
=> \frac{ \frac{cosecA + 1}{cosecA} }{ \frac{cosecA - 1}{cosecA} }
cosecA
cosecA−1
cosecA
cosecA+1
=> cosec A gets cancelled ,on both sides ,
hence ,
LHS becomes ,
cosecA + 1/cosecA - 1
Answered by
40
To Prove :-
•
Prove :-
,
•
Take L.H.S :-
- First convert sec A and tan A in terms of cos A and sin A. So, sec A = 1/cos A and tan A = sin A/cos A.
- cos² A = 1 - sin² A
- Use a² - b² = (a + b)(a - b) in denominator.
- sin A = 1/cosec A
Hence, Proved!!
Similar questions