Prove √(Sec theta-1/sec theta+1)=cosec theta-cot theta
Answers
Answered by
15
lets replace theta with ' A ' and under root( x )by sqrt(x) LHS becomes:
sqrt((sec(A)-1)/(sec(A)+1)) + sqrt((sec(A)+1)/(sec(A)-1))
=
sec(A)-1 + sec(A)+1/ sqrt((sec(A)+1)*(sec(A)-1)) : fraction adding
=
2sec(A)/sqrt(sec^2(A)-1) :sec square A -> sec^2(A)
=
2sec(A)/sqrt((tan^2(A))
=
2sec(A)/tan(A)
=
2cosec(A)
sqrt((sec(A)-1)/(sec(A)+1)) + sqrt((sec(A)+1)/(sec(A)-1))
=
sec(A)-1 + sec(A)+1/ sqrt((sec(A)+1)*(sec(A)-1)) : fraction adding
=
2sec(A)/sqrt(sec^2(A)-1) :sec square A -> sec^2(A)
=
2sec(A)/sqrt((tan^2(A))
=
2sec(A)/tan(A)
=
2cosec(A)
RITAM11:
sorry wrong
Answered by
77
Hi ,
Here I used A instead of theta.
LHS = √( secA - 1) / ( secA + 1 )
=√[(secA-1)²/(secA+1)(secA+1)
= √(secA -1 )²/(sec² A - 1 )
= √(secA - 1 )²/( tan² A )
= ( SecA - 1 ) / tanA
= SecA / tanA - 1/tanA
= ( 1/cosA ) / ( sinA/cosA ) - cotA
= 1/sinA - cotA
= CosecA - cotA
= RHS
I hope this helps you.
:)
Here I used A instead of theta.
LHS = √( secA - 1) / ( secA + 1 )
=√[(secA-1)²/(secA+1)(secA+1)
= √(secA -1 )²/(sec² A - 1 )
= √(secA - 1 )²/( tan² A )
= ( SecA - 1 ) / tanA
= SecA / tanA - 1/tanA
= ( 1/cosA ) / ( sinA/cosA ) - cotA
= 1/sinA - cotA
= CosecA - cotA
= RHS
I hope this helps you.
:)
Similar questions
Computer Science,
8 months ago
Science,
1 year ago
Math,
1 year ago
English,
1 year ago
English,
1 year ago