Prove = sec theta / sec theta + tan theta - 1 + cos theta / cosec theta + cot tbeta - 1 = 1..
Answers
Answer:
see the attachment you will get your answer
sinθ1−cosθ+tanθ1+cosθ
sinθ1−cosθ+tanθ1+cosθ = sinθ(1+cosθ)(1−cosθ)(1+cosθ)+tanθ(1−cosθ)(1+cos0)(1−cosθ)
sinθ1−cosθ+tanθ1+cosθ = sinθ(1+cosθ)(1−cosθ)(1+cosθ)+tanθ(1−cosθ)(1+cos0)(1−cosθ)=sinθ(1+cosθ)1−cos2θ+tanθ(1−cosθ)1−cos2θ
sinθ1−cosθ+tanθ1+cosθ = sinθ(1+cosθ)(1−cosθ)(1+cosθ)+tanθ(1−cosθ)(1+cos0)(1−cosθ)=sinθ(1+cosθ)1−cos2θ+tanθ(1−cosθ)1−cos2θ =sinθ(1+cosθ)sin2θ+sinθ(1−cosθ)cosθsin2θ
sinθ1−cosθ+tanθ1+cosθ = sinθ(1+cosθ)(1−cosθ)(1+cosθ)+tanθ(1−cosθ)(1+cos0)(1−cosθ)=sinθ(1+cosθ)1−cos2θ+tanθ(1−cosθ)1−cos2θ =sinθ(1+cosθ)sin2θ+sinθ(1−cosθ)cosθsin2θ = 1+cosθsin0+1−cosθcosθsinθ
sinθ1−cosθ+tanθ1+cosθ = sinθ(1+cosθ)(1−cosθ)(1+cosθ)+tanθ(1−cosθ)(1+cos0)(1−cosθ)=sinθ(1+cosθ)1−cos2θ+tanθ(1−cosθ)1−cos2θ =sinθ(1+cosθ)sin2θ+sinθ(1−cosθ)cosθsin2θ = 1+cosθsin0+1−cosθcosθsinθ = 1sinθ+cosθsinθ+1cosθsinθ−1sinθ
sinθ1−cosθ+tanθ1+cosθ = sinθ(1+cosθ)(1−cosθ)(1+cosθ)+tanθ(1−cosθ)(1+cos0)(1−cosθ)=sinθ(1+cosθ)1−cos2θ+tanθ(1−cosθ)1−cos2θ =sinθ(1+cosθ)sin2θ+sinθ(1−cosθ)cosθsin2θ = 1+cosθsin0+1−cosθcosθsinθ = 1sinθ+cosθsinθ+1cosθsinθ−1sinθ = cscθ+cot0+secθcscθ−cscθ
sinθ1−cosθ+tanθ1+cosθ = sinθ(1+cosθ)(1−cosθ)(1+cosθ)+tanθ(1−cosθ)(1+cos0)(1−cosθ)=sinθ(1+cosθ)1−cos2θ+tanθ(1−cosθ)1−cos2θ =sinθ(1+cosθ)sin2θ+sinθ(1−cosθ)cosθsin2θ = 1+cosθsin0+1−cosθcosθsinθ = 1sinθ+cosθsinθ+1cosθsinθ−1sinθ = cscθ+cot0+secθcscθ−cscθ