Math, asked by ADITYA52004, 1 year ago

prove: √ sec²O + cosec²O = tanO + cotO​

Answers

Answered by IamIronMan0
30

Answer:

 \sqrt{ \sec {}^{2} (x)  +  \csc {}^{2} (x) } \\  \\ use \:   \:bas ic \:  \: identities \:  \\   = \sqrt{1 +  \cot {}^{2} (x) + 1 +  \tan {}^{2} (x)  }  \\  \\  = \sqrt{  \cot {}^{2} (x) +  \tan {}^{2} (x)  + 2 }  \\  \\ since \:  \tan(x)  \cot(x)  = 1 \\  \\  = \sqrt{  \cot {}^{2} (x) + \tan {}^{2} (x)   + 2 \tan(x)  \cot(x) }  \\  \\  =  \sqrt{( \tan(x)  +  \cot(x)) {}^{2}  }  \\  \\  =  \tan(x)  +  \cot(x)

Similar questions