prove: (seca-secb)/(tana+tanb)=(tan-tanb)/(seca+secb)
Answers
Answered by
7
Step-by-step explanation:
LHS
(secA - secB) / (tanA + tanB)
by rationalising
(secA - secB)(secA + secB) / (secA + secB) × (tanA - tanB) / (tanA - tanB)(tanA + tanB)
(sec^2A - sec^2B) / (secA + secB) × (tanA - tanB) / (tan^2A - tan^2B)
{1 + tan^2A - (1 + tan^2B)} / (secA + secB) × (tanA - tanB) / (tan^2A - tan^2B)
(tan^2A - tan^2B) / (secA + secB) ×(tanA - tanB) / (tan^2A - tan^2B)
(tanA - tanB) / (secA - secB)
Similar questions
Math,
5 months ago
Math,
5 months ago
Biology,
11 months ago
Social Sciences,
11 months ago
Physics,
1 year ago