Math, asked by sah825486, 1 month ago

prove... secaA-tanA+1/secA-tanA-1=1+secA+tanA/1-secaA-tanA​

Answers

Answered by priyasha366
1

Step-by-step explanation:

To prove:  \frac{secA - tanA +1}{secA-tanA-1} = \frac{1+secA + tanA }{1-secA-tanA}

Identity used: 1 = sec²A - tan²A    [1 + tan²A = sec²A]

Proof:

L.H.S

\frac{secA - tanA + sec^{2} A - tan^{2}A  }{secA - tanA -(sec^{2} A - tan^{2}A)} [Taking out secA - tanA as a single term]

\frac{secA - tanA (1 + secA + tanA)  }{secA - tanA (1 - (secA + tanA)}

\frac{1 * 1+secA + tanA }{1 * 1-secA-tanA} = \frac{1+secA + tanA }{1-secA-tanA}

L.H.S = R.H.S

Hence proved

Similar questions