Math, asked by Anonymous, 6 months ago

PROVE
(secø - cosø)(cotø+tanø) = tanø secø​

Answers

Answered by tennetiraj86
9

Step-by-step explanation:

Used formulae:-

  • secA=1/CosA
  • Tan A=SinA/CosA
  • CotA=CosA/SinA
  • sin²A+Cos²A=1
  • sec²A+tan²A=1
Attachments:
Answered by BrainlyAryabhatta
1

Step-by-step explanation:

answer

resistors :- 6 ohm and 12 ohm

voltage :- 6 V

\bold { \underline{ \underline \orange{answer}}} \orange→

answer

2:9

\bold { \underline{ \underline \orange{solution}}} \orange→

solution

case (i)

when resistors are connected in series ;

Rs = R1 + R2

→ Rs = 6 + 12

→ Rs = 18 ohm

so, effective resistance in series combination is 18 ohm

we know that..

\begin{gathered} \bold{ \color{blue} \: h = \frac{ {v}^{2} t}{r}} \\ \end{gathered}

h=

r

v

2

t

\begin{gathered} \bold{ \implies \: h1 = \frac{ {6}^{2}t }{18} } \\ \\ \bold{ \implies h1 = \frac{36t}{18} } \\ \\ \bold{\implies \: h1 = 2t} \: \: \: \end{gathered}

⟹h1=

18

6

2

t

⟹h1=

18

36t

⟹h1=2t

so heat produced in series combination is 2t joule

case (ii)

when resistors are connected in parallel

we know that;

\begin{gathered} \bold{ \frac{1}{Rp} = \frac{1}{r1} + \frac{1}{r2} } \\ \end{gathered}

Rp

1

=

r1

1

+

r2

1

\begin{gathered} \bold { \tt{→ \: \frac{1}{rp} = \frac{1}{6} + \frac{1}{12} }} \: \: \: \: \: \: \\ \\ \bold{ \tt \implies \: \frac{1}{Rp} = \frac{3}{12} } \: \: \: \: \: \: \: \: \: \\ \\ \bold{ \implies \: Rp = \frac{12}{3} } \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bold{\implies \: Rp = 4 \: ohm } \: \: \: \: \end{gathered}

rp

1

=

6

1

+

12

1

Rp

1

=

12

3

⟹Rp=

3

12

⟹Rp=4ohm

so, effective resistance in parallel combination is 4 ohm

and

\begin{gathered} \bold{ \color{blue} \: h = \frac{ {v}^{2} t}{r}} \\\end{gathered}

h=

r

v

2

t

\begin{gathered} \bold{ \implies \: h2 = \frac{ {6}^{2}t }{4} } \\ \\ \bold{ \implies \: h2 = \frac{36t}{4} } \\ \\ \bold{ \implies \: h2 = 9t} \: \: \: \end{gathered}

⟹h2=

4

6

2

t

⟹h2=

4

36t

⟹h2=9t

so heat produced in parallel combination is 9t joule.

\begin{gathered} \bold{ \color{pink}ratio \: of \: h1 \: and \: h2 \: } \\ \\ \bold \blue{ \frac{h1}{h2} = \frac{2t}{9t} } \\ \\ \bold{so \: \: \: h1 : h2 =2 : 9 }\end{gathered}

ratioofh1andh2

h2

h1

=

9t

2t

soh1:h2=2:9

hence, ratio of heat produced in the series combination to that of the parallel combination of resistors is 2:9

id of moderators and brainly stars;

Shadowsabers03

Itzfaded Elena

Legendrenaline

no4

Sk2

Brainly Ronaldo

Kalpeshprabhakar

Nikki57

Arya1308

Tanu81

kvnmurty

rsagnik437

Rythm14

Rose08

collestcat 015

Themoonlightphoenix

Ar17

praxi13

HarishAS

Praneethworldtopper꧁

answer

resistors :- 6 ohm and 12 ohm

voltage :- 6 V

\bold { \underline{ \underline \orange{answer}}} \orange→

answer

2:9

\bold { \underline{ \underline \orange{solution}}} \orange→

solution

case (i)

when resistors are connected in series ;

Rs = R1 + R2

→ Rs = 6 + 12

→ Rs = 18 ohm

so, effective resistance in series combination is 18 ohm

we know that..

\begin{gathered} \bold{ \color{blue} \: h = \frac{ {v}^{2} t}{r}} \\ \end{gathered}

h=

r

v

2

t

\begin{gathered} \bold{ \implies \: h1 = \frac{ {6}^{2}t }{18} } \\ \\ \bold{ \implies h1 = \frac{36t}{18} } \\ \\ \bold{\implies \: h1 = 2t} \: \: \: \end{gathered}

⟹h1=

18

6

2

t

⟹h1=

18

36t

⟹h1=2t

so heat produced in series combination is 2t joule

case (ii)

when resistors are connected in parallel

we know that;

\begin{gathered} \bold{ \frac{1}{Rp} = \frac{1}{r1} + \frac{1}{r2} } \\ \end{gathered}

Rp

1

=

r1

1

+

r2

1

\begin{gathered} \bold { \tt{→ \: \frac{1}{rp} = \frac{1}{6} + \frac{1}{12} }} \: \: \: \: \: \: \\ \\ \bold{ \tt \implies \: \frac{1}{Rp} = \frac{3}{12} } \: \: \: \: \: \: \: \: \: \\ \\ \bold{ \implies \: Rp = \frac{12}{3} } \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bold{\implies \: Rp = 4 \: ohm } \: \: \: \: \end{gathered}

rp

1

=

6

1

+

12

1

Rp

1

=

12

3

⟹Rp=

3

12

⟹Rp=4ohm

so, effective resistance in parallel combination is 4 ohm

and

\begin{gathered} \bold{ \color{blue} \: h = \frac{ {v}^{2} t}{r}} \\\end{gathered}

h=

r

v

2

t

\begin{gathered} \bold{ \implies \: h2 = \frac{ {6}^{2}t }{4} } \\ \\ \bold{ \implies \: h2 = \frac{36t}{4} } \\ \\ \bold{ \implies \: h2 = 9t} \: \: \: \end{gathered}

⟹h2=

4

6

2

t

⟹h2=

4

36t

⟹h2=9t

so heat produced in parallel combination is 9t joule.

\begin{gathered} \bold{ \color{pink}ratio \: of \: h1 \: and \: h2 \: } \\ \\ \bold \blue{ \frac{h1}{h2} = \frac{2t}{9t} } \\ \\ \bold{so \: \: \: h1 : h2 =2 : 9 }\end{gathered}

ratioofh1andh2

h2

h1

=

9t

2t

soh1:h2=2:9

hence, ratio of heat produced in the series combination to that of the parallel combination of resistors is 2:9

id of moderators and brainly stars;

Shadowsabers03

Itzfaded

\begin{gathered} \bold{ \color{blue} \: h = \frac{ {v}^{2} t}{r}} \\ \end{gathered}

h=

r

v

2

t

\begin{gathered} \bold{ \implies \: h1 = \frac{ {6}^{2}t }{18} } \\ \\ \bold{ \implies h1 = \frac{36t}{18} } \\ \\ \bold{\implies \: h1 = 2t} \: \: \: \end{gathered}

⟹h1=

18

6

2

t

⟹h1=

18

36t

⟹h1=2t

so heat produced in series combination is 2t joule

case

Ar17

praxi13

HarishAS

Praneethworldtopper

Similar questions