Math, asked by yashashianay, 22 days ago

prove: (secthita + tanthita -1)(secthita- tanthita +1) = 2 tanthita​

Answers

Answered by sandy1816
0

(sec \theta + tan \theta - 1)(sec \theta - tan \theta + 1) \\  = ( \frac{1 + sin \theta - cos \theta}{cos \theta} )( \frac{1 - sin \theta + co s \theta}{cos \theta} ) \\  = ( \frac{1 + sin \theta - cos \theta}{cos \theta} )( \frac{1 - (sin \theta - cos \theta)}{cos \theta} ) \\  =  \frac{1 - ( {sin \theta - cos \theta})^{2} }{ {cos}^{2} \theta }  \\  =  \frac{1 - 1 + 2sin \theta \: cos \theta}{ {cos}^{2} \theta }  \\   = \frac{2sin \theta \: cos \theta}{ {cos}^{2}  \theta}  \\  = 2 \frac{sin \theta}{co s \theta}  \\  = 2tan \theta

Similar questions