Math, asked by darkcell578, 5 hours ago

prove √secx +1/secx -1 = 1/ cosecx - cotx​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\: \sqrt{\dfrac{secx + 1}{secx - 1} }

can be rewritten as

\rm \:  =  \:  \sqrt{\dfrac{\dfrac{1}{cosx} + 1 }{\dfrac{1}{cosx}  - 1} }

\rm \:  =  \:  \sqrt{\dfrac{\dfrac{1 + cosx}{cosx}}{\dfrac{1 - cosx}{cosx}} }

\rm \:  =  \:  \sqrt{\dfrac{1 + cosx}{1 - cosx} }

On rationalizing the numerator, we get

\rm \:  =  \:  \sqrt{\dfrac{1 + cosx}{1 - cosx} \times \dfrac{1 - cosx}{1 - cosx}  }

\rm \:  =  \:  \sqrt{\dfrac{1 -  {cos}^{2} x}{ {(1 - cosx)}^{2} } }

We know,

\red{\rm :\longmapsto\:\boxed{\tt{  {sin}^{2}x +  {cos}^{2}x = 1}}}

So, using this, we get

\rm \:  =  \: \dfrac{ \sqrt{ {sin}^{2} x} }{1 - cosx}

\rm \:  =  \: \dfrac{ sinx }{1 - cosx}

\rm \:  =  \: \dfrac{1}{ \:  \:  \:  \: \dfrac{1 - cosx}{sinx}  \:  \:  \:  \: }

\rm \:  =  \: \dfrac{1}{ \:  \:  \:  \: \dfrac{1}{sinx} - \dfrac{cosx}{sinx}   \:  \:  \:  \: }

\rm \:  =  \: \dfrac{1}{ \:  \:  \:  \: cosecx - cotx   \:  \:  \:  \: }

Hence, Proved

\rm \implies\:\: \boxed{\tt{ \sqrt{\dfrac{secx + 1}{secx - 1} }  =  \frac{1}{cosecx - cotx}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by ayushpingat2005
0

Answer:

12446

Step-by-step explanation:

Similar questions