Prove
sin 10 + sin 20 + sin 30 + sin 40 + sin 50 = sin 70 sin 80
Answers
Answered by
4
Step-by-step explanation:
L.H.S. = 2sin15cos5+2sin45cos5 [ using sin C+sin D= 2sin C+D/2 cos C-D/2 for sin10+sin20 & sin40+sin50]
= 2cos5 (sin15+sin45)
= 2cos5 (2sin30cos15) [ using sin C+sin D= 2sin C+D/2 cos C-D/2 ]
= 2cos5 (2 x 1/2 x cos15)
= 2cos5 cos15
R.H.S. = sin70+sin80
= 2sin75cos5 [ using sin C+sin D= 2sin C+D/2 cos C-D/2 ]
sin75 = sin(90-15) = cos 15
L.H.S = 2cos5 cos15
R.H.S. = 2cos15 cos5 [ since, sin75 = cos15 ]
Answered by
0
Answer:
Similar questions