Math, asked by shekharGautam, 1 year ago

Prove
sin 10 + sin 20 + sin 30 + sin 40 + sin 50 = sin 70 sin 80​

Answers

Answered by mickymouses
4

Step-by-step explanation:

L.H.S. = 2sin15cos5+2sin45cos5 [ using sin C+sin D= 2sin C+D/2 cos C-D/2 for sin10+sin20 & sin40+sin50]

= 2cos5 (sin15+sin45)

= 2cos5 (2sin30cos15) [ using sin C+sin D= 2sin C+D/2 cos C-D/2 ]

= 2cos5 (2 x 1/2 x cos15)

= 2cos5 cos15

R.H.S. = sin70+sin80

= 2sin75cos5 [ using sin C+sin D= 2sin C+D/2 cos C-D/2 ]

sin75 = sin(90-15) = cos 15

L.H.S = 2cos5 cos15

R.H.S. = 2cos15 cos5 [ since, sin75 = cos15 ]

Answered by fab13
0

Answer:

 \sin( 10)  +  \sin(20)  +  \sin(30)  +  \sin(40)  +  \sin(50)  \\  = 0.17365 + 0.34202 + 0.5 + 0.64279 + 0.76604 \\  = 2.4245

 \sin(70)  \sin(80)  \\  = 0.93969   \times  0.98481   \\ = 0.92542

Similar questions